• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 807
  • 408
  • 186
  • 94
  • 33
  • 19
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • Tagged with
  • 1855
  • 252
  • 221
  • 211
  • 208
  • 187
  • 186
  • 166
  • 158
  • 132
  • 110
  • 107
  • 101
  • 100
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Exposure to silica during the production of titanium dioxide from beach sand / Maryda Emily Tersia Draai

Draai, Maryda Emily Tersia January 2012 (has links)
Silica is a common silicon dioxide (SiO2) that can be crystalline or non-crystalline (amorphous). Amorphous silica is considered to be less hazardous than crystalline silica. Three dominant crystalline polymorphs exist, with silica quartz being the most common. Exposure to respirable crystalline silica (quartz) causes silicosis, a lung scarring disease. The aim of this study was to identify and quantify the silica exposure in respirable dust personal exposure samples, as well as in representative bulk samples which are large samples taken from the sources of airborne dust obtained from different mining and production plants involved in the production of titanium dioxide from beach sand. This is needed to determine the degree of risk of developing silicosis. Forty five workers employed in different mining and production plants participated in this study. Their eight-hour personal exposure to respirable particulate was determined. Personal respirable dust exposure samples and bulk samples were analyzed for silica by an accredited laboratory by means of X-ray diffraction based on NIOSH method 7500. Silica quartz was detected in personal respirable dust samples and bulk dust samples obtained from the mining and production plants, but amorphous silica was only detected in three personal exposure samples at the Slag plant and in the bulk sample obtained from the Roaster plant. All the silica quartz and amorphous silica concentrations in personal exposure samples were well below their respective exposure limits of 0.1 mg/m3 (quartz) and 3 mg/m3 (amorphous). No significant differences were found between the silica quartz concentrations in personal respirable exposure samples obtained from the mining ponds and the production plants, although a practical significance was found between some mining and production area personal exposure samples. The non-significant differences found between exposure concentrations and a practical significance suggest the necessity of involving a larger sample group in future. Other studies done in non-mining industries showed that some workers were over exposed to respirable silica dust. Compared to these findings the results of the present study showed the opposite, with respirable silica dust levels being below the South African action level and OEL. Further research, involving more samples, spread over a longer period of time, would probably be able to show a clear trend as to how quartz structures and exposure profiles change from the mining to the various production processes. Overexposure to silica quartz anywhere at the mine and production processes is considered unlikely, with the risk of developing silicosis being low. / Thesis (MSc (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2013
242

The evaluation and quantification of respirable coal and silica dust concentrations : a task-based approach / T. Grové.

Grové, Tanya January 2009 (has links)
Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts that contain crystalline silica. Silica exposure is an occupational health priority even when exposure has ceased or is below the occupational exposure limit (0.1 mg/m3). The objective of this study was to determine the individual contributions of the underground coal mining tasks to the total amount of respirable dust and respirable silica dust concentrations found in this environment. The tasks that were identified were continuous miner (CM) cutting, construction, the transfer point, tipping and roof bolting. Respirable dust sampling was conducted at the intake and return of each task, as well as at the intake and return of the section and the intake airway to the section. The five occupations that perform these tasks were also sampled to determine the personal exposure levels. Respirable dust concentrations and small concentrations of respirable silica dust were found in the intake airway and intake of the section, indicating that the air that enters the section is already contaminated. The respirable dust-generating hierarchy of the individual tasks was: transfer point>CM right cutting> CM left cutting> CM face cutting> construction> roof bolting > tipping. For respirable silica dust the hierarchy was: CM left cutting> construction> transfer point> CM right cutting. CM face cutting, tipping and roof bolting generated concentrations of below quantifiable levels. The personal exposures also differed and the eM and stamler operators had the highest exposure to respirable dust (3.417 ± 0.862 mg/m3) and respirable silica dust (0.179 ± 0.388 mg/m3) concentrations, respectively. Recommendations have been included for lowering the respirable dust and silica dust concentrations that are generated and that the workers are exposed to underground. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2010.
243

The evaluation and quantification of respirable coal and silica dust concentrations : a task-based approach / T. Grové.

Grové, Tanya January 2009 (has links)
Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts that contain crystalline silica. Silica exposure is an occupational health priority even when exposure has ceased or is below the occupational exposure limit (0.1 mg/m3). The objective of this study was to determine the individual contributions of the underground coal mining tasks to the total amount of respirable dust and respirable silica dust concentrations found in this environment. The tasks that were identified were continuous miner (CM) cutting, construction, the transfer point, tipping and roof bolting. Respirable dust sampling was conducted at the intake and return of each task, as well as at the intake and return of the section and the intake airway to the section. The five occupations that perform these tasks were also sampled to determine the personal exposure levels. Respirable dust concentrations and small concentrations of respirable silica dust were found in the intake airway and intake of the section, indicating that the air that enters the section is already contaminated. The respirable dust-generating hierarchy of the individual tasks was: transfer point>CM right cutting> CM left cutting> CM face cutting> construction> roof bolting > tipping. For respirable silica dust the hierarchy was: CM left cutting> construction> transfer point> CM right cutting. CM face cutting, tipping and roof bolting generated concentrations of below quantifiable levels. The personal exposures also differed and the eM and stamler operators had the highest exposure to respirable dust (3.417 ± 0.862 mg/m3) and respirable silica dust (0.179 ± 0.388 mg/m3) concentrations, respectively. Recommendations have been included for lowering the respirable dust and silica dust concentrations that are generated and that the workers are exposed to underground. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2010.
244

Selective hydrogenation of lignin-derived model compounds to produce nylon 6 precursors

Zhou, Xiaojuan 12 January 2015 (has links)
This study investigated the conversion of monomeric lignin fragments into cyclohexanols for use as a source of lignin-derived monomers for renewable Nylon 6 production. Lignin-derived monomeric phenolic species was transformed to their cyclohexanol analogs via selective catalytic hydrogenation. A fixed-bed flow reactor was used to evaluate the selective hydrogenation of individual model phenolic species (guaiacol, 4-methylguaiacol or diphenyl ether). The catalyst composition studied was Ni/SiO₂, which was previously shown to form cyclohexanol as an intermediate from phenol. A primary focus was on tuning the reaction conditions to form desired products, while avoiding the formation of bicyclic species which can be precursors to catalyst deactivation, or fully hydrogenated products of lower value. Reaction pathways of guaiacol, 4-methylguaiacol and diphenyl ether were studied. Major products obtained from guaiacol, 4-methylguaiacol and diphenyl ether reactions were 2-methoxycyclohexanone, 4-methylcyclohexanol and cyclohexanol, respectively. Spent catalyst was analyzed for extent of deactivation.
245

Enhanced dissolution of soda-lime glass under stressed conditions with small effective stress (0.05 MPa) at 35℃ to 55℃: Implication for seismogeochemical monitoring

KAWABE, Iwao, MIYAKAWA, Kazuya, YANG, Tianshi January 2012 (has links)
No description available.
246

High nickel- and titania-containing mesoporous silicas : synthesis and characterisation

Wang, Wei January 2005 (has links)
In order to heighten the nickel content in mesoporous silica frameworks, a new direct synthesis method, called modified DS method, has been developed instead of the commonly used direct synthesis method. In addition, with the aim of incorporating a high amount of titania into SBA-15 mesoporous silica without blocking its mesopores, a multistep impregnation method, called the MSI method, has also been developed. By using the two developed methods, high nickel- and high titania-containing mesoporous silicas obtained werc synthesized. The nickel- and titania-containing mesoporous silicas were characterised by various techniques, i.e. XRD, TEM, EDX, SENI, N2-sorption, XPS, FTIR, UV-Vis-DRS, UV-VIS, TPR, and Raman spectroscopy. For nickel-containing mesoporous silicas synthesized by the modified DS method, satisfactory mesostructures were obtained and the nickel content was increased up to 14.7 wt.%. So far, no reports have been published on synthesis of mesoporous MCM-41-type silica with higher nickel content than 3.6 wt.% using DS method. Via our modified IDS method, high BET surface area (>840 rný/g) and pore volume (>-0.73 cm3/g were also achieved. Nickel was found to be incorporated into the silica frameworks. Formation of nickel phyllosilicates was also confirmed. After activation, mesostructurcs were still intact. Small nickel clusters embedded in the silica walls were found. A high amount of titania (up to 24.4 wt.%) was incorporated into the mesoporous SBA-15 silica via the multistep impregnation method. No damage to the SBA-15 silica mesostructures was caused. The existence of small titania nano-domins was confirmed to be present by Raman and UV-vis-DRS measurements. High dispersion of them was realized via this method according to the results of low-anglc XRD, TEM and N2-sorption measurements. Importantly, no blockage of mesopores was observed. Photo-activity tests showed the superiority of the materials synthesized by the MSI method to those by one-step impregnation method.
247

An Improved Model for Sandstone Acidizing and Study of the Effect of Mineralogy and Temperature on Sandstone Acidizing Treatments and Simulation

Agarwal, Amit Kumar 02 October 2013 (has links)
Sandstone acidizing is a complex operation because the acidizing fluid reacts with a variety of minerals present in the formation that results in a wide range of reaction products. The hydrofluoric acid (HF) reaction rate differs widely from mineral to mineral because of the variation in the reaction rate and the area of contact with the injected fluid. The series of reactions occurring in sandstone makes it all the more difficult to find the exact individual reaction rate constants. An improved model that provides better estimates of the outcome of a sandstone acidizing treatment is developed following a review of previous sandstone acidizing models. The model follows the lumped mineral methodology and is based mainly on the kinetic approach. The use of accurate reaction-rate laws allows the model to effectively predict the consumption of acidizing fluid during the stimulation treatment. The consideration of a proper equation for the silica gel filming factor accounts for the fact that some clay becomes inaccessible to the acid when silica gel precipitates on their surface. The proposed model is shown here to be valid in extrapolating laboratory coreflood data and predicting the effluent acid concentration at various flow rates. The damage during sandstone acidizing can be minimized when stimulation treatments are designed according to the percentage of carbonate in the formation, type and amount of clay in the formation and the reservoir bottomhole temperature. Most of the available software for design and evaluation of acidizing treatments do not consider the temperature and mineralogy effects extensively. We studied one such software and developed recommendations to improve the design and evaluation of sandstone acidizing treatments by taking into account the multifaceted effects of temperature and mineralogy in increasingly deep and hot sandstone environments. These recommendations will be of great use in the times to come as most of the wells will have to be drilled at greater depths in search for new reserves.
248

Aggregation and sedimentation of fine solids in non-aqueous media

Fotovati, Maryam 06 1900 (has links)
A major challenge to any “solvent-based” bitumen extraction technology is the removal of suspended fine solids from the hydrocarbon medium (i.e. diluted bitumen). To address this problem, we examined how colloidal solids could be made to aggregate in a hydrocarbon medium and thus be separated by gravity settling. The model solids were micron-sized “bitumen-treated” silica particles; the oil phase was bitumen diluted in an organic solvent of variable aromatic content. On the macroscopic scale, the experiments involved quantifying the settling rates of the particles as the aromatic content of the solvent was varied. Our results showed the existence of an optimal (non-zero) aromatic content at which the solids settling rate was the highest. On the microscopic scale, adhesive forces between individual glass spheres were directly measured using the microcantilever technique (again in non-aqueous media). It was demonstrated that, in addition to being captured by asphaltene networks, the suspended solids could also homo-flocculate — and thus form aggregates and be separated — in an alkane-diluted bitumen environment. / Chemical Engineering
249

Chromatographic separation of asphaltenes on silica materials

Razavilar, Negin 11 1900 (has links)
In this study, we describe the use of different silica materials to separate vanadium compounds from Asphaltenes. We used high performance flash chromatography separation method to separate asphaltenes at different solvent strengths on sea sand. The separation conditions were optimized for flow rate and the strength of the solvent. The selectivity of separation was determined based on asphaltene and metal recovery. With separation on sea sand as the solvent strength increased, the recovery percentage of the asphaltenes also increased. Similarly, stronger solvent blends give poor selectivity based on peak shifts in fluorescence spectra. The separation conditions were then used to compare the performance of a series of silica materials treated with alkaline earth metals. These samples were treated with the same molar concentration of reactant at the same temperature. Treatment of silica materials resulted in an increase in metals recovery and asphaltene recovery by providing less active sites for adsorption. / Chemical Engineering
250

Scanning Tunneling Microscopy Studies of Metal Clusters Supported on Graphene and Silica Thin Film

Zhou, Zihao 2012 August 1900 (has links)
The understanding of nucleation and growth of metals on a planar support at the atomic level is critical for both surface science research and heterogeneous catalysis studies. In this dissertation, two planar substrates, including graphene and ultra-thin silica film were employed for supported model catalysts studies. The structure and stability of several catalytically important metals supported on these two substrates were thoroughly investigated using scanning tunneling microscopy (STM) coupled with other traditional surface science techniques. In the study of the graphene/Ru(0001) system, the key factors that govern the growth and distribution of metals on the graphene have been studied based on different behaviors of five transition metals, namely Pt, Rh, Pd, Co, and Au supported on the template of a graphene moire pattern formed on Ru(0001). Both metal-carbon (M-C) bond strength and metal cohesive energies play significant roles in the cluster formation process and the M-C bond strength is the most important factor that affects the morphology of clusters at the initial stages of growth. Interestingly, Au exhibits two-dimensional (2-D) structures that span several moire unit cells. Preliminary data obtained by dosing molecular oxygen onto CO pre-covered Au islands suggest that the 2-D Au islands catalyze the oxidation of CO. Moreover, graphene/Ru(0001) system was modified by introducing transition metals, oxygen or carbon at the interface between the graphene and Ru(0001). Our STM results reveal that the geometric and/or electronic structure of graphene can be adjusted correspondingly. In the study of the silica thin film system, the structure of silica was carefully investigated and our STM images favor for the [SiO4] cluster model rather than the network structure. The nucleation and adsorption of three metals, namely Rh, Pt and Pd show that the bond strength between the metal atom and Si is the key factor that determines the nucleation sites at the initial stages of metal deposition. The annealing effect studies reveal that Rh and Pt atoms diffuse beneath the silica film and form the 2-D islands that are covered with a silica thin film. In contrast, the formation of Pd silicide was observed upon annealing to high temperatures.

Page generated in 0.3065 seconds