• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 809
  • 408
  • 186
  • 94
  • 33
  • 19
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • Tagged with
  • 1857
  • 252
  • 221
  • 211
  • 208
  • 187
  • 187
  • 166
  • 158
  • 132
  • 110
  • 107
  • 101
  • 100
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Second harmonic spectroscopy of silicon nanocrystals

Figliozzi, Peter Christopher, 1972- 28 August 2008 (has links)
Using a novel two-beam technique developed to greatly enhance quadrupolar contributions to the second-order nonlinear polarization, we performed a nonlinear spectroscopic study of silicon nanocrystals implanted in an SiO₂ matrix.
232

Thin film nanoporous silica and graphene based biofuel cells (iBFCs) for low-power implantable medical device applications

Sharma, Tushar 23 February 2011 (has links)
This thesis describes the fabrication and characterization of an inorganic catalyst based glucose Biofuel cell using nanoporous (mesoporous) silica thin-film as a functional membrane. The desired use of nanoporous silica based biofuel cell is for a blood vessel implantable device. Blood vessel implantable Biofuel Cells (iBFCs) are subjected to higher glucose concentrations and blood flow rates. However, reduction in the implant thickness is critical for the intra-vascular implantable Biofuel cells. Platinum thin-film (thickness: 25 nm) deposited on Silicon substrate (500 [mu]m) served as the anode while Graphene pressed on Stainless steel mesh (175 [mu]m) was used as the cathode. Control experiments involved the use of surfactant-coated polypropylene membrane (50 [mu]m) and Activated Carbon (198 [mu]m) electrodes. Preliminary results show that nanoporous silica thin film (270 nm) is capable of replacing the conventional polymer based membranes with an increased power density output of as high as 10 [mu]W/cm2 under physiological conditions. in-vitro (5 [mu]W/cm2) and in-vivo (10 [mu]W/cm2) experiments demonstrate the potential of ultra-thin iBFCs towards powering future medical implants. / text
233

Development of New Polysilsesquioxane Spherical Particles as Stabilized Active Ingredients For Sunscreens

Tolbert, Stephanie Helene January 2015 (has links)
Healthy skin is a sign of positive self-worth, attractiveness and vitality. Compromises to this are frequently caused by extended periods of recreation in the sun and in turn exposure to the harmful effects of UV radiation. To maintain strength and integrity, protection of the skin is paramount. This can be achieved by implementing skin-care products which contain sunscreen active ingredients that provide UV protection. Unfortunately, photo-degradation, toxicity, and photo-allergies limit the effectiveness of present day sunscreen ingredients. Currently, this is moderated by physically embedding within inert silica particles, but leaching of the active ingredient can occur, thereby negating protective efforts. Alternatively, this research details the preparation and investigation of bridged silsesquioxane analogues of commercial ingredients which can be chemically grafted to the silica matrix. Studies with bridged salicylate particles detail facile preparation, minimized leaching, and enhanced UV stability over physically encapsulated and pendant salicylate counterparts. In terms of UVB protective ability, the highest maintenance of sun protection factor (SPF) after extended UV exposure was achieved with bridged incorporation, and has been attributed to corollary UV stability. Additionally, bridged salicylate particles can be classified as broad-spectrum, and rate from moderate to good in terms of UVA protective ability. Particles incorporated with a bridged curcuminoid silsesquioxane were also prepared and displayed comparable results. As such, an attractive method for sunscreen isolation and stabilization has been developed to eliminate the problems associated with current sunscreens, all while maintaining the established UV absorbance profiles of the parent compound. To appreciate the technology utilized in this research, a thorough understanding of sol-gel science as it pertains to hybrid organic/silica particles, including methods of organic fragment incorporation and insight on the effect of incorporation method on ingredient leaching and UV stability, is vital. This was afforded by analysis of hybrid fluorescent dansyl particles, prepared by both O/W microemulsion polymerization and a modified Stöber process, which detailed that covalent entrapment of bridged dansyl silsesquioxane is the incorporation method of choice to ensure minimized leaching and enhanced UV stability. As such, use of this method can provide exciting applications in fields where stability and retainment of the embedded ingredient is paramount for efficacy.
234

Silica Colloidal Crystals as Porous Substrates for Total Internal Reflection Fluorescence Microscopy

Bethea, Tomika R. C. January 2006 (has links)
In cell biology and chemistry, total internal reflection microscopy (TIRFM) has proven to be a useful technique that allows the probing of cellular processes with high-signal-to-noise ratio imaging. However, samples on solid substrates limit the accessibility to probe processes on extracellular membrane surface closest to the microscope objective. Colloidal crystals provide a porous alternative to the traditional solid substrates. Thin crystals exhibit optical properties similar to that of a fused silica coverslip allowing for TIRFM in the same manner as with a typical coverslip as demonstrated by the observance of Chinese hamster ovary cells with fluorescently labeled receptors on both types of substrates. Accessibility of the cell membrane closest to the substrate and the ability to probe fluorophore orientation information was observed by the binding of TIPP-cy5 to the human delta opioid receptor.
235

DEPOSITION AND CHARACTERIZATION OF MESOPOROUS SILICA COATINGS ON MAGNESIUM ALLOYS

Al Hegy, Afrah 17 March 2014 (has links)
In recent years, magnesium and magnesium alloys have received much attention as a new biomaterial in orthopaedic applications due to their biodegradability, biocompatibility, and their mechanical properties that are similar to natural bone tissue. The most common problem associated with magnesium as a biomaterial is low corrosion resistance in physiological solutions. This decreases the mechanical integrity of the implants in the early stages of healing and has a negative impact on the overall biocompatibility. The main goal of this study was to create a multi-layered coating consisting of a silica sol-gel under-layer to protect the substrate from corrosion in body fluids and a mesoporous silica top-layer to enhance the bioactivity of the coated implant material. The results indicate that the deposited multi-layered coating enhances both the bioactivity and the corrosion resistance of the material.
236

Crystallization and melting behavior studies of un-nucleated and silica-nucleated isotactic polystyrene and isotactic poly(propylene oxide)

Kennedy, Mary A. January 1988 (has links)
The effect of silica on the crystallization and melting behavior of a highly isotactic, well characterized isotactic polystyrene (i-PS) have been investigated. The origins of the various endotherms obtained upon heating have been defined by partial scanning experiments and by a study of the effect of heating rate using differential scanning calorimetry (DSC). The presence of 1 part silica in 100 parts polymer (1 pph) decreases the maximum degree of crystallinity considerably but has a minimal effect on the rate of crystallization. Analysis by the Avrami method shows that the silica does not affect the overall rate of crystallization significantly. The decrease in the crystallinity indicates that silica affects the level of secondary crystallization, thus the crystal perfection. / The surface morphologies and growth rates of i-PS spherulites, as studied by photomicroscopy, were not affected by 1 pph of silica. The experimental data were fitted to a modified form of the Hoffman-Lauritzen equation. / The effect of silica on spherulite growth rates and surface morphologies of isotactic poly(propylene oxide) (i-PPO) have also been investigated by optical microscopy. Two distinct i-PPO samples of different molecular weights were used, each of which was highly isotactic. The addition of silica has a pronounced effect on the morphology of the spherulites, producing dendritic type morphology. Upon step-crystallization, the spherulites exhibited mixed morphologies, i.e., fibrillar and ringed. Silica depresses the spherulite growth rates throughout the entire temperature range. The effects were more profound as the quantity of filler increased. The growth rate-temperature behavior was analysed in terms of the classical Hoffman-Lauritzen equation and a modified version to take into account the polymer-filler interaction.
237

Chromatographic separation of asphaltenes on silica materials

Razavilar, Negin Unknown Date
No description available.
238

Aggregation and sedimentation of fine solids in non-aqueous media

Fotovati, Maryam Unknown Date
No description available.
239

Processing of low permittivity silica thin films

Kokan, Julie Runyan 12 1900 (has links)
No description available.
240

Exposure to silica during the production of titanium dioxide from beach sand / Maryda Emily Tersia Draai

Draai, Maryda Emily Tersia January 2012 (has links)
Silica is a common silicon dioxide (SiO2) that can be crystalline or non-crystalline (amorphous). Amorphous silica is considered to be less hazardous than crystalline silica. Three dominant crystalline polymorphs exist, with silica quartz being the most common. Exposure to respirable crystalline silica (quartz) causes silicosis, a lung scarring disease. The aim of this study was to identify and quantify the silica exposure in respirable dust personal exposure samples, as well as in representative bulk samples which are large samples taken from the sources of airborne dust obtained from different mining and production plants involved in the production of titanium dioxide from beach sand. This is needed to determine the degree of risk of developing silicosis. Forty five workers employed in different mining and production plants participated in this study. Their eight-hour personal exposure to respirable particulate was determined. Personal respirable dust exposure samples and bulk samples were analyzed for silica by an accredited laboratory by means of X-ray diffraction based on NIOSH method 7500. Silica quartz was detected in personal respirable dust samples and bulk dust samples obtained from the mining and production plants, but amorphous silica was only detected in three personal exposure samples at the Slag plant and in the bulk sample obtained from the Roaster plant. All the silica quartz and amorphous silica concentrations in personal exposure samples were well below their respective exposure limits of 0.1 mg/m3 (quartz) and 3 mg/m3 (amorphous). No significant differences were found between the silica quartz concentrations in personal respirable exposure samples obtained from the mining ponds and the production plants, although a practical significance was found between some mining and production area personal exposure samples. The non-significant differences found between exposure concentrations and a practical significance suggest the necessity of involving a larger sample group in future. Other studies done in non-mining industries showed that some workers were over exposed to respirable silica dust. Compared to these findings the results of the present study showed the opposite, with respirable silica dust levels being below the South African action level and OEL. Further research, involving more samples, spread over a longer period of time, would probably be able to show a clear trend as to how quartz structures and exposure profiles change from the mining to the various production processes. Overexposure to silica quartz anywhere at the mine and production processes is considered unlikely, with the risk of developing silicosis being low. / Thesis (MSc (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2013

Page generated in 0.0324 seconds