• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 26
  • 11
  • 10
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 176
  • 28
  • 27
  • 23
  • 22
  • 21
  • 21
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films

Stepanov, Dmitri 25 August 2011 (has links)
The probability of recombination of photogenerated electron hole pairs in crystalline silicon is governed by the density of surface defect states and the density of charge carriers. Depositions of intrinsic hydrogenated amorphous silicon (a-Si:H) in dc saddle field (DCSF) PECVD system and hydrogenated amorphous silicon nitride (SiNx) in rf PECVD system forms a dual layer stack on c-Si, which results in an excellent passivation of the surface and an anti-reflection coating. Response Surface Methodology is used in this work to optimize the deposition conditions of SiNx. Optimization of the response surface function yielded deposition conditions that materialized in a surface recombination velocity of less than 4cm/s. The BACH (Back Amorphous Crystalline silicon Heterojunction) cell concept makes use of this dual layer a-Si:H/SiNx stack to form a high efficiency photovoltaic device. The high quality passivating structure can result in the BACH solar cell device with more than 20% conversion efficiency.
42

Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films

Stepanov, Dmitri 25 August 2011 (has links)
The probability of recombination of photogenerated electron hole pairs in crystalline silicon is governed by the density of surface defect states and the density of charge carriers. Depositions of intrinsic hydrogenated amorphous silicon (a-Si:H) in dc saddle field (DCSF) PECVD system and hydrogenated amorphous silicon nitride (SiNx) in rf PECVD system forms a dual layer stack on c-Si, which results in an excellent passivation of the surface and an anti-reflection coating. Response Surface Methodology is used in this work to optimize the deposition conditions of SiNx. Optimization of the response surface function yielded deposition conditions that materialized in a surface recombination velocity of less than 4cm/s. The BACH (Back Amorphous Crystalline silicon Heterojunction) cell concept makes use of this dual layer a-Si:H/SiNx stack to form a high efficiency photovoltaic device. The high quality passivating structure can result in the BACH solar cell device with more than 20% conversion efficiency.
43

Model test for fabrication and separation of wear particles in hip implants

Skjöldebrand, Charlotte January 2013 (has links)
Total hip replacement is a common orthopedic surgery today with a population with an increasing life expectancy and a more active lifestyle. Most implants have a life expectancy of 10 years or longer, however after 25 years one out of four implants has been revised. This means that the risk of a secondary surgery is high for young patients. In many cases the reason for revision is the formation of nanometer to micrometer sized particles that activate the immune system to resorb bone.   The implants today usually consist of a femoral head of a cobalt chromium alloy and a cup of polyethylene. Replacing these materials with a cobalt chromium alloy with a silicon nitride coating is hoped to generate less and smaller wear particles that will not activate the immune system to resorb bone. This study compares wear particles from three different silicon nitride coatings with wear particles from polyethylene and a cobalt chromium alloy. The first was a standard coating, the second had a layered structure and the third had a nitrogen content gradient.   This study uses a reciprocating motion with an alumina ball that slides against a sample of cobalt chromium with a silicon nitride coating in a serum solution to generate wear particles. The particles are then analyzed with a scanning electron microscope. In order to separate the particles from the serum solution two different methods were used. The first one used hydrochloric acid and the second used the enzyme proteinase K. Apart from the particles the wear tracks were investigated with vertical scanning interferometry and the adhesion was studied with scratch tests and light microscopy.   The results show that the wear particles do not differ between the coatings. All coatings show a high wear volume, which is believed to be a consequence of the material combination, movement pattern or surface roughness of the counter surface. In conclusion the test set up generates particles of a relevant size and both methods for serum digestion were successful.
44

High-resolution analytical electron microscopy and creep deformation of silicon nitride ceramics /

Jin, Qiang. January 1998 (has links)
Thesis (Ph.D.) -- McMaster University, 1998. / Includes bibliographical references (leaves 186-196). Also available via World Wide Web.
45

Corrosion resistant chemical vapor deposited coatings for SiC and Si₃N₄ /

Graham, David W., January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 64-70). Also available via the Internet.
46

Elaboration par CVI/CVD et caractérisation de dépôts dans le système Si-N(-O) / CVI/CVD Films elaboration and characterization in the Si-N(-O) system

Cossou, Benjamin 14 September 2018 (has links)
La thèse porte sur cette couche de nitrure ou d’oxynitrure de silicium. Le déroulé prévoit l’élaboration des deux types de dépôts par voie gazeuse (par Chemical Vapor Infiltration CVI), la caractérisation de ces dépôts (par tous les moyens scientifiques à disposition et jugés utiles), ainsi que des essais en conditions proches de l’application visée (haute température, présence de phases liquides) pour juger de l’efficacité de ces dépôts et notamment effectuer une comparaison entre le nitrure et l’oxynitrure. Une étude complète des paramètres modifiables lors de l’élaboration et de leur effet sur la chimie (et par conséquent l’influence sur le comportement du matériau en conditions d’utilisation) représente le cœur du travail considéré. / Ceramics are usually used at high temperature because of their refractory nature. However, they are too brittle to be submitted to high stresses, such as in the rotating parts of aircraft engines. One way to reduce the brittleness of ceramics is to design them as composites. The fiber/matrix architecture displays a damageable character thanks to a suitable interfacial layer, which is deposited on the fiber cloths before the infiltration with molten silicon. The aim of the thesis is to propose and evaluate a solution to protect the fiber reinforcement during the impregnation step with liquid silicon. This solution involves the deposition of a protective layer made of silicon nitride or oxynitride.
47

Foto e eletroluminescência de filmes de nitreto de silício não estequiométrico depositados por sputterin reativo / Photo and electroluminescence from non-stoichiometric silicon nitride deposited by reactive sputtering

Sombrio, Guilherme January 2016 (has links)
Filmes finos de nitreto de silício com excesso de nitrogênio foram depositados sobre silício por sputtering reativo para obter estruturas emissoras de luz. As amostras foram modificadas por implantação iônica para verificar a influência dos dopantes arsênio (As) e boro (B) nos espectros de fotoluminescência (PL). As medidas de PL foram realizadas na faixa de temperatura entre 15-300 K e apresentaram uma emissão entre os comprimentos de onda 370-870 nm. Os dopantes introduziram uma emissão em 725 nm na banda de emissão, principalmente as dopadas com As. Foram realizadas medidas de microscopias para verificar a presença de nanoestruturas assim como a distribuição dos dopantes no material. As imagens de microscopias confirmaram a presença de nanocristais de nitreto de silício nas fases α, β e γ e identificaram a presença do dopante B nas fases cristalinas. O modelo de condução de Pool-Frenkel domina o transporte de portadores, indicando que a condução ocorre pelos níveis intrabandas, característica que definiu o modo que as recombinações radiativas ocorreram. As medidas de eletroluminescência (EL) apresentaram uma emissão centrada nos comprimentos de onda 760 e 880 nm (polarização negativa) e 1010 nm (polarização positiva) revelando diferenças significativas quando comparadas com as medidas de PL. Essa diferença esta associada à maneira como os elétrons populam os níveis intrabanda (excitação óptica para PL e elétrica para EL) que resulta em recombinações radiativas em diferentes comprimentos de ondas. A intensidade dos espectros de EL manifestou uma dependência quase linear com a densidade de corrente para ambas as polarizações. As medidas de EL em campos alternados exibiram um espectro de emissão composto pela soma das bandas obtidas separadamente em cada uma das polarizações. Medidas de EL em diferentes temperaturas (50-300 K) foram realizadas para investigar a influência da temperatura nos processos de recombinação radiativa. A intensidade exibiu uma redução com o aumento da temperatura, devido ao aumento do acoplamento elétron-fônon. / Silicon nitride with excess of nitrogen thin films were deposited on silicon substrate by reactive sputtering in order to obtain light emitting structures. Samples were modified by ion implantation of arsenic (As) and boron (B) to ascertain dopant leverage at photoluminescence (PL) spectra. PL measurements were performed at temperature ranging from 15 K up to 300 K and showed a band emission between wavelength 370 and 870 nm. An emission centered at 725 nm was observed in doped samples; especially in the presence of As. Microscope images showed crystalline structures of α-Si3N4, β-Si3N4 and γ-Si3N4 and confirmed boron dopant in nanocrystalline structures. Pool-Frenkel conduction model dominates electron transport in non-stoichiometric silicon nitride films due to intraband levels, phenomenon that has a huge contribution to electroluminescence (EL) emission. EL signals were composed by two peaks centered at 760 and 880 nm (negative bias – EL-N) and one peak at 1010 nm (positive bias – EL-P). Diffences between PL and EL spectra exhibit a clear dependence on the mode of excitation (photo and current source) on radiative recombination process. EL intensity had almost a linear increase with current density for both polarizations. EL measurements under AC voltage were composed by a superposition of the signals from EL-N and EL-P signals. Photo and electroluminescence measurements were collected at different temperatures (50 to 300 K) in order to investigate the temperature influence on the radiative recombination. The EL intensity was decreasing with temperature increasing, due to electron-phonon interactions.
48

Foto e eletroluminescência de filmes de nitreto de silício não estequiométrico depositados por sputterin reativo / Photo and electroluminescence from non-stoichiometric silicon nitride deposited by reactive sputtering

Sombrio, Guilherme January 2016 (has links)
Filmes finos de nitreto de silício com excesso de nitrogênio foram depositados sobre silício por sputtering reativo para obter estruturas emissoras de luz. As amostras foram modificadas por implantação iônica para verificar a influência dos dopantes arsênio (As) e boro (B) nos espectros de fotoluminescência (PL). As medidas de PL foram realizadas na faixa de temperatura entre 15-300 K e apresentaram uma emissão entre os comprimentos de onda 370-870 nm. Os dopantes introduziram uma emissão em 725 nm na banda de emissão, principalmente as dopadas com As. Foram realizadas medidas de microscopias para verificar a presença de nanoestruturas assim como a distribuição dos dopantes no material. As imagens de microscopias confirmaram a presença de nanocristais de nitreto de silício nas fases α, β e γ e identificaram a presença do dopante B nas fases cristalinas. O modelo de condução de Pool-Frenkel domina o transporte de portadores, indicando que a condução ocorre pelos níveis intrabandas, característica que definiu o modo que as recombinações radiativas ocorreram. As medidas de eletroluminescência (EL) apresentaram uma emissão centrada nos comprimentos de onda 760 e 880 nm (polarização negativa) e 1010 nm (polarização positiva) revelando diferenças significativas quando comparadas com as medidas de PL. Essa diferença esta associada à maneira como os elétrons populam os níveis intrabanda (excitação óptica para PL e elétrica para EL) que resulta em recombinações radiativas em diferentes comprimentos de ondas. A intensidade dos espectros de EL manifestou uma dependência quase linear com a densidade de corrente para ambas as polarizações. As medidas de EL em campos alternados exibiram um espectro de emissão composto pela soma das bandas obtidas separadamente em cada uma das polarizações. Medidas de EL em diferentes temperaturas (50-300 K) foram realizadas para investigar a influência da temperatura nos processos de recombinação radiativa. A intensidade exibiu uma redução com o aumento da temperatura, devido ao aumento do acoplamento elétron-fônon. / Silicon nitride with excess of nitrogen thin films were deposited on silicon substrate by reactive sputtering in order to obtain light emitting structures. Samples were modified by ion implantation of arsenic (As) and boron (B) to ascertain dopant leverage at photoluminescence (PL) spectra. PL measurements were performed at temperature ranging from 15 K up to 300 K and showed a band emission between wavelength 370 and 870 nm. An emission centered at 725 nm was observed in doped samples; especially in the presence of As. Microscope images showed crystalline structures of α-Si3N4, β-Si3N4 and γ-Si3N4 and confirmed boron dopant in nanocrystalline structures. Pool-Frenkel conduction model dominates electron transport in non-stoichiometric silicon nitride films due to intraband levels, phenomenon that has a huge contribution to electroluminescence (EL) emission. EL signals were composed by two peaks centered at 760 and 880 nm (negative bias – EL-N) and one peak at 1010 nm (positive bias – EL-P). Diffences between PL and EL spectra exhibit a clear dependence on the mode of excitation (photo and current source) on radiative recombination process. EL intensity had almost a linear increase with current density for both polarizations. EL measurements under AC voltage were composed by a superposition of the signals from EL-N and EL-P signals. Photo and electroluminescence measurements were collected at different temperatures (50 to 300 K) in order to investigate the temperature influence on the radiative recombination. The EL intensity was decreasing with temperature increasing, due to electron-phonon interactions.
49

Processing of Silicon Nitride Ceramics Produced by Spark Plasma Sintering

Schnittker, Kimberlin, Schnittker, Kimberlin January 2017 (has links)
Four silicon nitride powder blends vary in starting powder characteristics, glass chemistry, and phase composition. This work focuses on how these properties influence densification behavior, microstructural development, and the resulting mechanical performance of dense ceramics. Previous work completed on alpha-rich, low oxide containing (8 wt%), and fine silicon nitride powder (GS-44) showed high hardness equiaxed with grained ceramic. GS-44 served as an excellent precursor for the matrix phase material in graphene reinforced composites, which resulted in 235% increase in toughness and high hardness retention [1] with the addition of 1.5 vol% graphene. As the GS-44 powder is no longer in production, investigative work into other commercial powders and customization of powder blends was initiated. Commercial blends were selected based on availability, high alpha content, fine particle size, and additive chemistry (Al2O3, MgO, and Y2O3). The objective was to understand which powder characteristics led to a ceramic design that contained high hardness, strength, and toughness properties in order to increase the use of silicon nitride in extreme temperature environments. One such example is aerospace and structural applications that require a high-performance material that is lightweight and good thermal stability. Strong covalent bonding in silicon nitride make densification of powders extremely difficult; thereby, sintering additives are necessary to promote liquid phase sintering processes. Compaction of ceramic powders was carried out using a spark plasma sintering (SPS) furnace by utilizing a pulsed direct current through a conductive graphite die that encapsulates the sample powder. SPS was preferred over other conventional sintering methods owing to its high heating rate and short dwell times at the sintering target temperature. Thus, SPS provides superior control for tailoring the final silicon nitride properties by producing a hard alpha-phase and tough beta-phase microstructures. The custom blend developed had an appreciable amount of media wear included during the milling process that increased the additive content. Development of the custom blend was used to understand the effect of a larger additive content. Commercial GS-44 blend was used as the control to track the effect of adjusting specific surface area and oxide content in silicon nitride powder systems (HCS-M, C-R3, and UA-SN). The mechanical results for the four matrix systems, showed that toughness increased with grain coarsening and minimization of alumina content in beta silicon nitride. Based on these findings it is important to determine tradeoffs (i.e. balance of high hardness, toughness, and strength) to engineer an optimal ceramic that can be used for structural and aerospace applications.
50

Nanoindentation Techniques for the Evaluation of Silicon Nitride Thin Films

Mangin, Weston T 01 December 2016 (has links)
Silicon nitride thin films are of interest in the biomedical engineering field due to their biocompatibility and favorable tribological properties. Evaluation and understanding of the properties of these films under diverse loading and failure conditions is a necessary prerequisite to their use in biomedical devices. Three wafers of silicon nitride-coated silicon were obtained from Lawrence Livermore National Laboratory and used to create 96 samples. Samples were subjected to nanoindentation testing to evaluate the mechanical properties of the film. Samples were subjected to nanoimpact testing to compare the damage resistance of the film to separate nanoimpact types. Samples were subjected to nanoscratch testing to evaluate the consistency of the critical load of the film. Results showed that there were no significant differences in the mechanical properties of the film across the tested groups. There was a significant difference observed in the rate of damage to the film between pendulum oscillation nanoimpact testing and sample oscillation nanoimpact testing, with the former causing more damage with all experiment variables controlled for. Results showed that the critical load measure for the film was significantly different between different nanoscratch test parameters. The conclusions from this study will support future work for in vitro and in vivo testing of ceramic thin films for biomedical applications.

Page generated in 0.1117 seconds