• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 68
  • 27
  • 11
  • 10
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 101
  • 76
  • 47
  • 41
  • 30
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

On the index of differential operators on manifolds with conical singularities

Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
The paper contains the proof of the index formula for manifolds with conical points. For operators subject to an additional condition of spectral symmetry, the index is expressed as the sum of multiplicities of spectral points of the conormal symbol (indicial family) and the integral from the Atiyah-Singer form over the smooth part of the manifold. The obtained formula is illustrated by the example of the Euler operator on a two-dimensional manifold with conical singular point.
122

A Lefschetz fixed point theorem for manifolds with conical singularities

Nazaikinskii, Vladimir, Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
We establish an Atiyah-Bott-Lefschetz formula for elliptic operators on manifolds with conical singular points.
123

Quantization of symplectic transformations on manifolds with conical singularities

Nazaikinskii, Vladimir, Schulze, Bert-Wolfgang, Sternin, Boris, Shatalov, Victor January 1997 (has links)
The structure of symplectic (canonical) transformations on manifolds with conical singularities is established. The operators associated with these transformations are defined in the weight spaces and their properties investigated.
124

On the index formula for singular surfaces

Fedosov, Boris, Schulze, Bert-Wolfgang, Tarkhanov, Nikolai January 1997 (has links)
In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.
125

The index of higher order operators on singular surfaces

Fedosov, Boris, Schulze, Bert-Wolfgang, Tarkhanov, Nikolai N. January 1998 (has links)
The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.
126

The index of quantized contact transformations on manifolds with conical singularities

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris January 1998 (has links)
The quantization of contact transformations of the cosphere bundle over a manifold with conical singularities is described. The index of Fredholm operators given by this quantization is calculated. The answer is given in terms of the Epstein-Melrose contact degree and the conormal symbol of the corresponding operator.
127

A semiclassical quantization on manifolds with singularities and the Lefschetz Formula for Elliptic Operators

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir, Sternin, Boris January 1998 (has links)
For general endomorphisms of elliptic complexes on manifolds with conical singularities, the semiclassical asymptotics of the Atiyah-Bott-Lefschetz number is calculated in terms of fixed points of the corresponding canonical transformation of the symplectic space.
128

Surgery and the relative index in elliptic theory

Nazaikinskii, Vladimir E., Sternin, Boris Yu. January 1999 (has links)
We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol.
129

On the homotopy classification of elliptic operators on manifolds with singularities

Schulze, Bert-Wolfgang, Nazaikinskii, Vladimir E., Sternin, Boris Yu. January 1999 (has links)
We study the homotopy classification of elliptic operators on manifolds with singularities and establish necessary and sufficient conditions under which the classification splits into terms corresponding to the principal symbol and the conormal symbol.
130

Pseudo-differential crack theory

Kapanadze, David, Schulze, Bert-Wolfgang January 2000 (has links)
Crack problems are regarded as elements in a pseudo-differential algbra, where the two sdes int S± of the crack S are treated as interior boundaries and the boundary Y of the crack as an edge singularity. We employ the pseudo-differential calculus of boundary value problems with the transmission property near int S± and the edge pseudo-differential calculus (in a variant with Douglis-Nirenberg orders) to construct parametrices od elliptic crack problems (with extra trace and potential conditions along Y) and to characterise asymptotics of solutions near Y (expressed in the framework of continuous asymptotics). Our operator algebra with boundary and edge symbols contains new weight and order conventions that are necessary also for the more general calculus on manifolds with boundary and edges.

Page generated in 0.0452 seconds