• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 13
  • 12
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 143
  • 19
  • 19
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Some Investigations of Scaling Effects in Micro-Cutting

Subbiah, Sathyan 13 October 2006 (has links)
The scaling of specific cutting energy is studied when micro-cutting ductile metals. A unified framework for understanding the scaling in specific cutting energy is first presented by viewing the cutting force as a combination of constant, increasing, and decreasing force components, the independent variable being the uncut chip thickness. Then, an attempt is made to isolate the constant force component by performing high rake angle orthogonal cutting experiments on OFHC Copper. The data shows a trend towards a constant cutting force component as the rake angle is increased. In order to understand the source of this constant force component the chip-root is investigated. By quickly stopping the spindle at low cutting speeds, the chip is frozen and the chip-workpiece interface is examined in a scanning electron microscope. Evidence of ductile tearing ahead of the cutting tool is seen at low and high rake angles. At higher cutting speeds a quick-stop device is used to obtain chip-roots. These experiments also clearly indicate evidence of ductile fracture ahead of the cutting tool in both OFHC Copper and Al-2024 T3. To model the cutting process with ductile fracture leading to material separation the finite element method is used. The model is implemented in a commercial finite element software using the explicit formulation. Material separation is modeled via element failure. The model is then validated using the measured cutting and thrust forces and used to study the energy consumed in cutting. As the thickness of layer removed is reduced the energy consumed in material separation becomes important. Simulations also show that the stress state ahead of the tool is favorable for ductile fracture to occur. Ductile fracture in three locations in an interface zone at the chip root is seen while cutting with edge radius tool. A hypothesis is advanced wherein an element gets wrapped around the tool edge and is stretched in two directions leading to fracture. The numerical model is then used to study the difference in stress state and energy consumption between a sharp tool and a tool with a non-zero edge radius.
32

Monte Carlo simulations of solid walled proportional counters with different site size for HZE radiation

Wang, Xudong 15 May 2009 (has links)
Characterizing high z high energy (HZE) particles in cosmic radiation is of importance for the study of the equivalent dose to astronauts. Low pressure, tissue equivalent proportional counters (TEPC) are routinely used to evaluate radiation exposures in space. A multiple detector system composed of three TEPC of different sizes was simulated using the Monte-Carlo software toolkit GEANT4. The ability of the set of detectors to characterize HZE particles, as well as measure dose, was studied. HZE particles produce energetic secondary electrons (-rays) which carry a significant fraction of energy lost by the primary ion away from its track. The range and frequency of these delta rays depends on the velocity and charge of the primary ion. Measurements of lineal energy spectra in different size sites will differ because of these delta ray events and may provide information to characterize the incident primary particle. Monte Carlo calculations were accomplished, using GEANT4, simulating solid walled proportional detectors with unit density site diameter of 0.1, 0.5 and 2.5 µm in a uniform HZE particle field. The simulated spherical detectors have 2 mm thick tissue equivalent walls. The uniform beams of 1 GeV/n, 500 MeV/n and 100 MeV/n 56Fe, 28Si, 16O, 4He and proton particles were used to bombard the detector. The size effect of such a detector system was analyzed with the calculation results. The results show that the y vs. yf(y) spectrum differs significantly as a function of site size. From the spectra, as well as the calculated mean lineal energy, the simulated particles can be characterized. We predict that the detector system is capable of characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction. characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction.
33

Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method Based on a Simplified Strain Gradient Elasticity Theory

Ma, Hemei 2010 May 1900 (has links)
Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an eigenstrain gradient are analytically solved. The solutions are based on a simplified strain gradient elasticity theory (SSGET) that includes one material length scale parameter in addition to two classical elastic constants. For the infinite-domain inclusion problem, the Eshelby tensor is derived in a general form by using the Green’s function in the SSGET. This Eshelby tensor captures the inclusion size effect and recovers the classical Eshelby tensor when the strain gradient effect is ignored. By applying the general form, the explicit expressions of the Eshelby tensor for the special cases of a spherical inclusion, a cylindrical inclusion of infinite length and an ellipsoidal inclusion are obtained. Also, the volume average of the new Eshelby tensor over the inclusion in each case is analytically derived. It is quantitatively shown that the new Eshelby tensor and its average can explain the inclusion size effect, unlike its counterpart based on classical elasticity. To solve the finite-domain inclusion problem, an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET are proposed and utilized. The solution for the disturbed displacement field incorporates the boundary effect and recovers that for the infinite-domain inclusion problem. The problem of a spherical inclusion embedded concentrically in a finite spherical body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. It is demonstrated through numerical results that the newly obtained Eshelby tensor can capture the inclusion size and boundary effects, unlike existing ones. Finally, a homogenization method is developed to predict the effective elastic properties of a heterogeneous material using the SSGET. An effective elastic stiffness tensor is analytically derived for the heterogeneous material by applying the Mori-Tanaka and Eshelby’s equivalent inclusion methods. This tensor depends on the inhomogeneity size, unlike what is predicted by existing homogenization methods based on classical elasticity. Numerical results for a two-phase composite reveal that the composite becomes stiffer when the inhomogeneities get smaller.
34

Price Drift on the Stockholm Stock Exchange

Höijer, Mattias, Lejdelin, Martin, Lindén, Patrik January 2007 (has links)
<p>This paper examines whether the phenomena of price drift around quarterly earnings re-leases exist among firms listed on the large cap. list at the Stockholm Stock Exchange for a time period ranging from the first quarter of 2003 to the second quarter of 2006. It fur-thermore examines the ability of the variables forecast error, relative to analyst’s estimates, and firms’ size to explain the variation in price drift among firms.</p><p>A sample of some 30 firms were drawn in the first three quarters of each year between 2003 and 2005, for the year of 2006 only the fist two quarters were included in the study. For each quarter all firms were classified into three different portfolios on the basis of earnings deviations relative to mean analyst’s estimates (forecast error). The returns for each firm in all portfolios were investigated during 20 days post- and pre quarterly earnings release date, resulting in an event window totaling 41 days. In order to clear out effects from general market movements the Capital Asset Pricing Model, CAPM, was used in which betas were estimated for all firms each quarter.</p><p>The findings from this study indicate that price drift, measured by cumulative abnormal re-turn, occur for firms with both negative forecast error as well as positive. For firms with positive error, statistically significant positive price drift was found for both the pre- and post period. As for the firms with earnings below analyst’s mean estimates, negative prean-nouncement drift was statistically supported.</p><p>The ability of firms size and forecast error to explain the variation in price drift on a stock level was very weak, R2 measures of below 5% was reported. However, forecast error was a strongly significant independent variable in the context of the regressions run for both pre- and post-announcement drift. The firms below the lower market cap. quartile in the sample show, on average, lower pre-announcement drift than the firms belonging in the largest quartile.</p><p>Concerning market efficiency among the large cap. firms the price drift found is an indica-tion of market inefficiency both it terms of the semi strong and the strong form. However, care should be taken before generalizing the results from this study but. Possible misspeci-fication of the equilibrium return model will skew the price drift measurement. Moreover, speculation is not explicitly controlled for in this test. Finally, this study is done within a li-mited time span; hence generalization over time is not possible</p>
35

Shear behaviour of continuous concrete beams reinforced with GFRP bars

Mahmoud, Karam Abdou Awad 26 November 2015 (has links)
Continuous beams represent main structural elements in most reinforced concrete (RC) structures such as parking garages and overpass bridges. Deterioration of such structures due to corrosion of steel reinforcement is common in North America. To overcome the corrosion problems, the use of fiber-reinforced polymer (FRP) bars and stirrups becomes a viable alternative to steel reinforcement. However, to date, the shear behaviour of FRP-RC continuous beams has not been explored yet. As such, the objective of this study is to investigate the shear behaviour of such beams. In this study, twenty four full-scale continuous concrete beams were constructed and tested. The test beams had rectangular cross section with 200-mm width and a height of 300, 550 or 850 mm and were continuous over two equal spans. The main investigated parameters were concrete strength, type and ratio of longitudinal reinforcement, type and ratio of transverse reinforcement and beam effective depth. Moreover, a 3-D nonlinear finite element model (FEM) was constructed to simulate the behaviour of FRP-RC continuous beams. The model was verified against the experimental results and validated against test results from previous studies. Then, the verified/validated model was used to conduct a parametric study to investigate the effect of a wide range of the parameters on the shear behaviour of GFRP-RC beams. The experimental and FEM results showed that shear-critical GFRP-RC continuous beams exhibited moment redistribution. Also, it was observed that increasing the concrete strength and the longitudinal reinforcement ratio increased the shear strength significantly. Moreover, the presence of GFRP stirrups significantly enhanced the shear strength of the tested beams. Regarding the size effect, test results showed that there was adverse or no size effect on the shear strength of GFRP-RC continuous beams when they failed in the interior shear span while beams failed in the exterior shear span exhibited clear size effect. Furthermore, a comparison between the test results and the provisions of the available models and FRP standards and design guidelines in North America revealed that these design provisions can be safely applied to continuous beams. / February 2016
36

Low temperature scanning tunneling microscope study of low-dimensional superconductivity on metallic nanostructures

Kim, Jungdae 28 October 2011 (has links)
Superconductivity is a remarkable quantum phenomenon in which a macroscopic number of electrons form a condensate of Cooper pairs that can be described by a single quantum wave function. According to the celebrated Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, there is a minimum length scale (the coherence length) below which the condensate has a rigid quantum phase. The fate of superconductivity in a system with spatial dimensions smaller than [the coherence length] has been the subject of intense interest for decades and recent studies of superconductivity in ultra-thin epitaxial metal films have revealed some surprising behaviors in light of BCS theory. Notably, it was found that superconductivity remains robust in thin lead films with thicknesses orders of magnitude smaller than the coherence length (i.e. in the extreme two dimensional limit). Such studies raise the critical question: what happens to superconductivity as all dimensions are reduced toward the zero dimensional limit? By controlling the lateral size of ultra thin 2D islands, we systematically address this fundamental question with a detailed scanning tunneling microscopy/spectroscopy study. We show that as the lateral dimension is reduced, the strength of the superconducting order parameter is also reduced, at first slowly for dimensions larger than the bulk coherence length, and then dramatically at a critical length scale of ~ 40nm. We find this length scale corresponds to the lateral decay length of the order parameter in an island containing regions of different heights and different superconducting strength. Overall, our results suggest that fluctuation corrections to the BCS theory are important in our samples and may need to be systematically addressed by theory. / text
37

Strain Gradient Solutions of Eshelby-Type Problems for Polygonal and Polyhedral Inclusions

Liu, Mengqi 2011 December 1900 (has links)
The Eshelby-type problems of an arbitrary-shape polygonal or polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material are analytically solved using a simplified strain gradient elasticity theory (SSGET) that contains a material length scale parameter. The Eshelby tensors for a plane strain inclusion with an arbitrary polygonal cross section and for an arbitrary-shape polyhedral inclusion are analytically derived in general forms in terms of three potential functions. These potential functions, as area integrals over the polygonal cross section and volume integrals over the polyhedral inclusion, are evaluated. For the polygonal inclusion problem, the three area integrals are first transformed to three line integrals using the Green's theorem, which are then evaluated analytically by direct integration. In the polyhedral inclusion case, each of the three volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed to a contour (line) integral based on Stokes' theorem and using an inverse approach. In addition, the Eshelby tensor for an anti-plane strain inclusion with an arbitrary polygonal cross section embedded in an infinite homogeneous isotropic elastic material is analytically solved. Each of the newly derived Eshelby tensors is separated into a classical part and a gradient part. The latter includes the material length scale parameter additionally, thereby enabling the interpretation of the inclusion size effect. For homogenization applications, the area or volume average of each newly derived Eshelby tensor over the polygonal cross section or the polyhedral inclusion domain is also provided in a general form. To illustrate the newly obtained Eshelby tensors and their area or volume averages, different types of polygonal and polyhedral inclusions are quantitatively studied by directly using the general formulas derived. The numerical results show that the components of the each SSGET-based Eshelby tensor for all inclusion shapes considered vary with both the position and the inclusion size. It is also observed that the components of each averaged Eshelby tensor based on the SSGET change with the inclusion size.
38

Analysis of Particle Size and Interface Effects on the Strength and Ductility of Advanced High Strength Steels

Ettehad, Mahmood 02 October 2013 (has links)
This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength and ductility with low finished cost. Many experimental and numerical studies have been done to achieve the optimized behavior of DP steels by controlling their microstructure. Experiments are costly and time consuming so in recent years numerical tools are utilized to help the metallurgist before doing experiments. Most of the numerical studies are based on classical (local) constitutive models where no material length scale parameters are incorporated in the model. Although these models are proved to be very effective in modeling the material behavior in the large scales but they fail to address some critical phenomena which are important for our goals. First, they fail to address the size effect phenomena which materials show at microstructural scale. This means that materials show stronger behavior at small scales compared to large scales. Another issue with classical models is the mesh size dependency in modeling the softening behavior of materials. This means that in the finite element context (FEM) the results will be mesh size dependent and no converged solution exist upon mesh refinement. Thereby by applying the classical (local) models one my loose the accuracy on measuring the strength and ductility of DP steels. Among the non-classical (nonlocal) models, gradient-enhanced plasticity models which consider the effect of neighboring point on the behavior of one specific point are proved to be numerically effective and versatile tools to accomplish the two concerns mentioned above. So in this thesis a gradient-enhanced plasticity model which incorporates both the energetic and dissipative material length scales is derived based on the laws of thermodynamics. This model also has a consistent yield-like function for the interface which is an essential part of the higher-order gradient theories. The main issue with utilizing these theories is the implementation which limits the application of these theories for modeling the real problems. Here a straightforward implementation method based on the classical FEM and Meshless method will be proposed which due to its simplicity it can be applied for many problems. The application of the developed model and implementation will be shown on removing the mesh size dependency and capturing the size effect in microstructure level of dual phase steels.
39

Cross Sectional Determinants Of Turkish Stock Market Returns

Celiker, Umut 01 July 2004 (has links) (PDF)
This thesis analyzes the relationship between stock returns and firm-specific characteristics including market beta, size, book-to-market ratio, leverage, earnings yield, net sales-to-price ratio and prior return performance in Istanbul Stock Exchange during the period 1993-2003. Moreover, the predictability of some macroeconomic variables based on the stock market return behavior is investigated.
40

Evaluation of the Length Dependent Yarn Properties

Rypl, Rostislav, Chudoba, Rostislav, Vorechovský, Miroslav, Gries, Thomas 01 December 2011 (has links) (PDF)
The paper proposes a method for characterizing the in-situ interaction between filaments in a multifilament yarn. The stress transfer between neighboring filaments causes the reactivation of a broken filament at some distance from the break. The utilized statistical bundle models predict a change in the slope of the mean size effect curve once the specimen length becomes longer than the stress transfer length. This fact can be exploited in order to determine the stress transfer length indirectly using the yarn tensile test with appropriately chosen test lengths. The identification procedure is demonstrated using two test series of tensile tests with AR-glass and carbon yarns.

Page generated in 0.0442 seconds