• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 21
  • 14
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 26
  • 21
  • 19
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effect of urea and related compounds on the mechanical properties of paper

Fisher, Henry D. 01 January 1951 (has links)
No description available.
22

Chemical usage and savings at the Austin Water Utility drinking water treatment plants

Dobbertien, Matthew Francis, 1988- 18 June 2012 (has links)
The goal of this research was to maintain excellent water quality at reduced chemical operations cost. Chemical usage data at the Austin water treatment plants were examined by identifying trends and investigating suspected inefficiencies. The investigation consisted in jar test experiments, plant-scale experiments, and equilibrium modeling. Lime and ferric sulfate were suspected to be added inefficiently with respect to cost while the other treatment chemicals were assessed to be added efficiently. Lime was investigated in greater depth than ferric sulfate because ferric sulfate was better characterized in its effect on finished water quality within the range of interest. The goal of lime addition is to remove hardness from the water by a process called lime softening. Hardness removal decreases corrosion in transmission lines and prevents deposition of unwanted solids in household appliances. Additionally, lime softening aids in particle removal and disinfection-by-product precursor reduction. The efficiency of lime addition was evaluated based on settled water pH and causticity goals, which serve as the operating parameters for the water treatment plants. The most efficient lime softening occurs when multiple softening goals are simultaneously achieved. First, the dissolved calcium concentration must achieve a minimum. Second, the dissolved magnesium concentration must be reduced by at least 10 mg/L as CaCO₃. Third, total alkalinity must be preserved at its maximum concentration while also achieving excellent hardness removal. Fourth, natural organic matter (NOM), which serves as a precursor for disinfection-by-products, must be removed sufficiently to achieve DBP reduction goals. Finally, the turbidity in the effluent from the settling basin must be below 2.0 NTU. Through the chemical investigation of lime based on existing scientific literature, computer modeling, jar test experiments, and full-scale testing, it was determined that the optimal condition operating condition for lime softening was a settled water pH range from 10.0 - 10.1. / text
23

Hydraulic performance and stability of geosynthetic landfill cover systems with constrained drainage at the outlet

Yates, Trevor Butler 30 September 2011 (has links)
Sliding failures of landfill cover systems are common, and the slip surface is often at the interface between a geosynthetic drainage layer and an underlying textured geomembrane. In an effort to understand the sliding failures, the objectives of this research project are to summarize current regulation and practice in landfill cover design, use experimental methods to characterize the behavior of geosynthetic landfill materials in cover systems approaching failure, and develop models to evaluate the hydraulic performance and stability of landfill cover systems. Inclined plane tests were conducted to explore the behavior of a geosynthetic drainage material/textured geomembrane interface. The interface had effective normal stress dependent strain softening behavior, with more strain softening measured at higher effective normal stresses. A numerical model for confined flow in a drainage layer with a constrained outlet was developed. The model was used to evaluate how water fills and empties from a geosynthetic drainage layer for a variety of inflow conditions and constraints to flow at the outlet. The model was used to demonstrate that a drainage layer that effectively conveys water out of a cover system with a free flowing drainage outlet quickly fills with water when the outlet has a modest constraint to flow. An iterative, numerical model was developed to calculate stability solutions for landfill cover slopes that satisfy force equilibrium and strain compatibility while accounting for effective normal stress dependent strain softening and various pore water pressure conditions. Stability solutions reveal that depending on the water pressure in the drainage layer, the geosynthetic drainage material may experience tension at many points along the slope. It is crucial for the stability of the landfill cover system to maintain free-flowing conditions at the drainage layer outlet. A modest constraint to flow at the outlet has a significant adverse effect on the ability of the landfill cover drainage layer to convey water out of the system, which can lead to instability. The drainage layer outlet should be designed to ensure free flow of water out of the drainage layer. / text
24

Korozijai ir karščiui atsparaus plieno standaus apkrovimo ciklinių deformavimo parametrų nustatymas / Evaluation of cyclic properties by static characterristics for structural materials

Kopūstienė, Diana 13 June 2005 (has links)
It is impossible to improve the quality of the machines, to increase their reliability and lifetime if the working conditions and the properties of the material are not analyzed. We must know the type of the material (hardening, softening or cyclically stabile), what is chosen for the constructions in low cycle loading, because strain and stress change during the exploitation and depend on this type. If we know the type of the material, we can determine the possibility of its application in concrete exploitation conditions. Real working conditions of the most constructions are close to loading with limited strain (hard straining), because elastic and plastic deformation is met in the zones of crack and stress concentration, that are surrounded with elastically deformed material. The low cycle loading curves parameters A, and are used for the computation of elastic plastic strain curves. These parameters are obtained from the soft low cycle loading results in many cases. The other possible ways for the determination of parameters A, and are shown in this work. The most investigated materials had the initial instability in the interval . For more objective evaluation of stress strain curves parameters A, and , all values of width of hysteresis loop up to semicycle were rejected as insignificant in comparison with the rest lifetime in cycles range . The parameter for the evaluation of hardening (softening) intensity was determined, when the values of... [to full text]
25

Methods for reduction of trihalomethanes in the rural municipality of Macdonald potable water supply system

Cho, Steven Y. F. 13 January 2010 (has links)
Monitoring data for potable water in the R.M. of Macdonald regional water system indicates elevated levels of chlorine disinfection by-products (DBPs), trihalomethanes (THMs). Dissolved Organic Carbon (DOC) and chlorine dose are the key precursors for the formation of THMs. Currently, the DOC is not removed efficiently at the Sanford water treatment plant, which supplies the R.M.’s potable water distribution system. The raw water DOC concentration incoming to the plant varied from 8.9mg/L to 31.8mg/L during this study. Sanford treated water effluent contained an average DOC of 6.5mg/L and the THM levels ranged from 86.6ppb to 175.7ppb. One of the objectives of this study was to conduct jar tests to optimize Sanford’s water treatment process to improve removal of DOC. Optimization of the coagulation process successfully reduced the DOC level in the plant effluent by 51% during the summer and 34% in the winter. The DOC reduction resulted in a THM reduction of 73.5ppb in the summer and 59.9ppb during the winter. Results showed that removal of 1mg/L of DOC eliminates 26.8ppb of THMs in summer and 11.9ppb during the winter. Another goal of this project was to investigate the relationship between THMs and their precursors, which includes: water DOC, free chlorine residual, and the chlorine contact time. Water samples were strategically collected throughout the Sanford regional water distribution system; the samples were tested for DOC, UV254, SUVA, chlorine residual, and contact time. A linear relationship between THM formation and chlorine contact time (R2 of 0.92) was found. This indicates that the content of THMs can be decreased by reducing the amount of time the water stays in the distribution system.
26

Methods for reduction of trihalomethanes in the rural municipality of Macdonald potable water supply system

Cho, Steven Y. F. 13 January 2010 (has links)
Monitoring data for potable water in the R.M. of Macdonald regional water system indicates elevated levels of chlorine disinfection by-products (DBPs), trihalomethanes (THMs). Dissolved Organic Carbon (DOC) and chlorine dose are the key precursors for the formation of THMs. Currently, the DOC is not removed efficiently at the Sanford water treatment plant, which supplies the R.M.’s potable water distribution system. The raw water DOC concentration incoming to the plant varied from 8.9mg/L to 31.8mg/L during this study. Sanford treated water effluent contained an average DOC of 6.5mg/L and the THM levels ranged from 86.6ppb to 175.7ppb. One of the objectives of this study was to conduct jar tests to optimize Sanford’s water treatment process to improve removal of DOC. Optimization of the coagulation process successfully reduced the DOC level in the plant effluent by 51% during the summer and 34% in the winter. The DOC reduction resulted in a THM reduction of 73.5ppb in the summer and 59.9ppb during the winter. Results showed that removal of 1mg/L of DOC eliminates 26.8ppb of THMs in summer and 11.9ppb during the winter. Another goal of this project was to investigate the relationship between THMs and their precursors, which includes: water DOC, free chlorine residual, and the chlorine contact time. Water samples were strategically collected throughout the Sanford regional water distribution system; the samples were tested for DOC, UV254, SUVA, chlorine residual, and contact time. A linear relationship between THM formation and chlorine contact time (R2 of 0.92) was found. This indicates that the content of THMs can be decreased by reducing the amount of time the water stays in the distribution system.
27

Packing of particles during softening and melting process.

Zheng, Xiao-Qin, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary ??? two different melting point particles) on softening deformation are examined. The principal findings of this study are: 1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly. 2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate. 3. The bed deformation rate of a mono bed is much greater than that of a binary one. 4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls. 5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one. 6. The macro softening deformation of the bed behaves the theory of creep deformation. 7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed. 8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values. 9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system. 10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles. 11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform. 12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.
28

Interface behaviour and stability of geocomposite drain/soil systems

Othman, Maidiana January 2016 (has links)
Landfill covers are designed as impermeable caps on top of waste containment facilities after the completion of landfill operations. Geocomposite drain (GD) materials consist of a geonet or geospacer (as a drainage core) sandwiched between non-woven geotextiles that act as separators and filters. GD provides a drainage function as part of the cover system. The stability performance of landfill cover system is largely controlled by the interface shear strength mobilised between the elements of the cover. If a GD is used, the interface shear strength properties between the upper surface of the GD and the overlying soil may govern stability of the system. It is not uncommon for fine grained materials to be used as cover soils. In these cases, understanding soil softening issues at the soil interface with the non-woven geotextile is important. Such softening can be caused by capillary break behaviour and build-up of water pressures from the toe of the drain upwards into the cover soil. The interaction processes to allow water flow into a GD core through the soil-geotextile interface is very complex, and have been defined herein as Capillary Related Interface Breakthrough (CRIB). The infiltration test using small column on CRIB conditions for GD in contact with fine grained soils confirmed the development of capillary break at the interface. The effect of water build-up on the interface leads to soil softening in fine grained soils layer and reduce the interface shear strength hence potential instability of the system. Two series of fine grained soil/GD interface shear strength tests conducted to determine the interface shear strength behaviour for a range of soil water contents. The soil softening at the interface due to soaked behaviour show a reduction in interface shear strength and this aspect should be emphasized in design specifications and construction control. Comparison on the main behaviour using field measurements on the trial landfill cover at Bletchley were conducted to increase confidence in the understanding of the implications for design of cover systems.
29

Fatigue Softening of Copper Single Crystals

Huggard, David 05 1900 (has links)
<p> The fatigue softening behaviour of copper single crystals was investigated as a function of temperature. Copper crystals, prestrained in tension, were softened by "push-pull" cycling at constant plastic strain amplitude, in the low amplitude range, and the cyclic stress-strain curves determined at various temperatures. Transmission electron microscopy was employed to determine the detailed microstructural changes which occured during softening while X-ray and slip line observations were utilized to indicate the overall structural changes on a macroscopic scale. The results were correlated and a rationale, based on dipole production, proposed for the observed softening behaviour. </p> / Thesis / Master of Science (MSc)
30

Strontium in Drinking Water: Occurrence, Distribution, and Removal

O'Donnell, Alissa J. January 2014 (has links)
No description available.

Page generated in 0.0965 seconds