• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 40
  • 34
  • 12
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 437
  • 171
  • 119
  • 94
  • 65
  • 57
  • 56
  • 54
  • 54
  • 52
  • 50
  • 42
  • 42
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Transporte quântico em spintrônica: corrente e shot noise via funções de Green de não equilíbrio. / Quantum transport in Spintronics: current and shot noise via nonequilibrium Green functions.

Souza, Fabricio Macedo de 20 December 2004 (has links)
Estudamos transporte quântico dependente de spin em sistemas de ponto e de poço quântico acoplados a contatos magnéticos. O primeiro passo do nosso estudo foi a dedução de fórmulas originais para a corrente e para o ruído em sistemas com tunelamento dependente de spin, através do formalismo de funções de Green de mão equilíbrio. As equações deduzidas reproduzem casos limites da literatura - em particular as fórmulas de Landauer-Buttiker. Posteriormente aplicamos essas fórmulas para estudar três sistemas distintos: (1) ponto quântico acoplado a contatos ferromagnéticos, (2) um ponto quântico acoplado a múltiplos terminais ferromagnéticos, e (3) um poço quântico acoplado a terminais de semicondutor magnético diluído (DMS). No sistema (1) consideramos os alinhamentos paralelo (P) e anti-paralelo (AP) entre as magnetizações dos terminais. Nesse sistema levamos em conta interação de Coulomb e espalhamento de spin no ponto quântico. Com as fórmulas para corrente e ruído deduzidas aqui, encontramos, por exemplo, que a interação de Coulomb, combinada com o magnetismo dos eletrodos, leva a um bloqueio de Coulomb dependente de spin. Esse efeito por sua vez leva a uma polarização da corrente que pode ser modulada (intensidade e sinal) através de uma tens~ao externa. Também encontramos que o espalhamento de spin leva a comportamentos contrastantes entre corrente e ruído. Enquanto a corrente na configuração AP aumenta com a taxa de espalhamento de spin R, o ruído nessa mesma configuração é suprimido para uma certa faixa de valores de R. Um outro efeito interessante que observamos foi a possibilidade de se suprimir o ruído térmico através de uma tensão de porta. Para o sistema (2) mostramos que é possível injetar corrente &#8593-polarizada no ponto quântico e coletar simultaneamente correntes &#8593 e &#8595 polarizadas em terminais diferentes. Além disso, a corrente ao passar do reservatório emissor para um dos reservatórios coletores tem a sua polarização intensificada. Portanto esse sistema pode operar como inversor e amplificador de polarização de corrente. Por último, analisamos os efeitos de terminais DMS e quantização de Landau (na presença de um campo magnético externo) sobre a corrente e o ruído no sistema (3). Encontramos que o efeito Zeeman gigante nos terminais DMS, gerado pela interação de troca s-d, leva a uma polarização da corrente. Em particular, para uma certa faixa de tensão o efeito Zeeman gigante resulta na completa supressão de uma dada componente de spin no transporte. Com isso é possível controlar a polarização da corrente através de uma tensão externa. Também observamos oscilações na corrente, no ruído e no fator de Fano como função do campo magnético. / We study spin dependent quantum transport in quantum dots and quantum well devices attached to magnetic leads. We first derive general formulas, including electron-electron interaction and spin flip, for both current and noise, using the no equilibrium Green function technique (Keldysh). From our equations we regain limiting cases in the literature - in particular the Landauer-Buttiker formula when we neglect electron-electron interaction. We apply these formulas to study three distinct systems: (1) a quantum dot attached to two ferromagnetic leads, (2) a quantum dot linked to many ferromagnetic leads, and (3) a quantum well coupled to dilute magnetic semiconductor (DMS) terminals. In the first system we consider both parallel (P) and anti-parallel (AP) ferromagnetic alignments of the leads. Coulomb interaction and spin flip scattering are also taken into account. With the formulas for the current and the noise derived here, we find, for instance, that the Coulomb interaction, combined with the magnetism of the electrodes, gives rise to a spin-dependent Coulomb blockade. This effect allows the control (intensity and sign) of the current polarization via the bias voltage. We also observe that spin flip scattering yields contrasting behavior between current and shot noise. While the current in the AP configuration increases with the spin flip, the shot noise becomes suppressed for a range of spin flip rates. Another interesting finding is the possibility to suppress the thermal noise via a gate voltage. For the dot coupled to three magnetic leads, we show that it is possible to inject current &#8593-polarized into the dot from the FM emitter, detect simultaneously &#8593 and &#8595 - polarized currents at distinct collectors. In addition, we find that the current has its polarization amplified when going from the emitter to one of the collectors. Therefore we have a device that operates as both as current polarization inverter and amplifier. Finally, we analyze the effects of DMS leads and Landau quantization on the current and noise of system (3). We and that the giant Zeeman effect in the DMS leads, due to the it s-d exchange interaction, gives rise to a spin polarized current, and for a particular bias voltage range, full suppression of one spin component. This gives rise to the possibility of tuning the current polarization via the bias voltage. We also observe oscillations in the current, the noise and the Fano factor as a function of the magnetic field.
162

Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions

Li, Hua January 2016 (has links)
Thesis advisor: Kevin S. Bedell / Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low temperature regime (often referred to as the precession-dominated regime) between a ferromagnetic Fermi liquid (FFL) and a normal metal metallic Fermi liquid (NFL), also known as the (F/N) junction, which is considered as one of the most basic spintronic devices. In particular, I explore the propagation of spin waves and transport of magnetization through the interface of the F/N junction where nonequilibrium spin polarization is created on the normal metal side of the junction by electrical spin injection. I calculate the probable spin wave modes in the precession-dominated regime on both sides of the junction especially on the NFL side where the system is out of equilibrium. Proper boundary conditions at the interface are introduced to establish the transport of the spin properties through the F/N junction. A possible transmission conduction electron spin resonance (CESR) experiment is suggested on the F/N junction to see if the predicted spin wave modes could indeed propagate through the junction. Potential applications based on this novel spin transport feature of the F/N junction are proposed in the end. / Thesis (PhD) — Boston College, 2016. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
163

Transições ópticas em heteroestruturas semicondutoras Zincblende com duas sub-bandas / Optical transitions in Zincblende semiconductors heterostructures with two sub-bands

Mosqueiro, Thiago Schiavo 22 February 2011 (has links)
Apresento neste trabalho uma derivação alternativa da hamiltoniana efetiva para um elétron na banda de condução de uma heteroestrutura semicondutora de rede Zincblende. Partindo do modelo de Kane 8 × 8 e da aproximação das funções envelope, esta hamiltoniana efetiva foi obtida com a linearização dos denominadores (dependentes das autoenergias) presentes na equação para a banda de condução, sob a hipótese de que o gap de energia seja muito maior que todas as demais diferenças de energia envolvidas (verdade para a maioria das estruturas Zincblende). A partir de um procedimento introduzido previamente1,3, desenvolvi um procedimento mais geral que implementa sistematicamente esta linearização até segunda ordem no inverso do gap de energia e que corrige a normalização do spinor da banda de condução usando as bandas de valência. Este procedimento é idêntico à expansão em série de potência no inverso da velocidade da luz utilizada para se obter aproximações relativísticas da equação de Dirac. Uma vantagem deste procedimento é a arbitrariedade na forma dos potenciais, o que implica na validade da hamiltoniana resultante para poços, fios e pontos quânticos. Evidencio também as consequências de cada termo desta hamiltoniana efetiva para os autoestados eletrônicos em poços retangulares, incluindo termos independentes de spin inéditos (Darwin e interação momento linearcampo elétrico). Estes resultados estão de acordo com os estudos anteriores4. A fim de estudar transições ópticas dentro da banda de condução, mostro que o acoplamento mínimo pode ser realizado diretamente na hamiltoniana de Kane se os campos externos variam tão lentamente quanto as funções envelope. Repetindo a linearização dos denominadores de energia, derivo uma hamiltoniana efetiva para a banda de condução com acoplamentos elétron-fótons. Um destes acoplamentos, induzido exclusivamente pela banda de valência, origina transições mediadas pelo spin eletrônico. Estas transições assistidas por spin possibilitam mudanças, opticamente induzidas, na orientação do spin eletrônico, um fato que talvez possa ser útil na construção de dispositivos spintrônicos. Por fim, as taxas de transição deste acoplamento apresentam saturação e linhas de máximos e mínimos no espaço recíproco. Espero que estas acoplamentos ópticos possam auxiliar na observação dos efeitos dos acoplamentos spin-órbita intra (Rashba) e intersubbandas. / In this work, I present an alternative derivation of the conduction band effective hamiltonian for Zincblende semiconductor heterostructures. Starting from the 8×8 Kane model and envelope function approximation, this effective hamiltonian was obtained by means of a linearization in the eigenenergy-dependent denominators present the conduction band equation, under the hypothesis that the energy gap is bigger than any other energy difference in the system (true for mostly every Zincblende semiconductor bulk or heterostructure). Based on a previous procedure1,3, I have developed a more general procedure that implements sistematicaly (i) this linearization and (ii) renormalizes the conduction band spinor using the valence bands, both (i) and (ii) up to second order in the inverse of the energy gap. This procedure is identical to the expansion in power series of the inverse of the light speed used to derive non-relativistic approximations of the Dirac equation. One advantage of this procedure is the generality of the potentials adopted in our derivation: the same results hold for quantum wells, wires and dots. I show the consequences of each term of this hamiltonian for the electron eigenstates in retangular wells, including novel spin-independent terms (Darwin and linear momentumelectric field couplings). These resulties agree with previous works4. In order to study conduction band optical transitions, I show that the minimal substitution can be performed directly in the Kane hamiltonian if the external fields vary slowly (at least, as slowly as the envelope functions). Repeating the linearization of the energy denominators, I derive a new effective hamiltonian, up to second order in the inverse of the energy gap, with electron-photons couplings. One of these couplings, induced exclusively by the valence bands, gives rise to optical transitions mediated by the electron spin. This spin-assisted coupling enable optically-induced spin flipps in conduction subband transitions, which can be useful in the construction of spintronic devices. Finaly, the spin-assisted transitions rates show saturation and lines of maxima and minima in the reciprocal lattice. I hope that these optical couplings can be of any help in the observation of interesting effects induced by the intra and intersubband spin-orbit coupling.
164

Investigação da influência das velocidades de deriva no funcionamento de um transistor de spin / Investigation of drift velocities influence on the operation of a spin transistor

Kawahala, Nícolas Massarico 26 March 2019 (has links)
A spintrônica oferece um paradigma de uma eletrônica baseada no spin do elétron, ao invés de sua carga, para manipular e transportar informação. Para que o conceito de um transistor de spin possa se traduzir em um dispositivo prático, é necessário que se conheça a influência causada pelo movimento dos elétrons polarizados na dinâmica de magnetização de spins em um canal de transporte. Neste sentido, foi estudado um gás de elétrons bidimensional confinado em um poço quântico de GaAs, dopado simetricamente com Si, em um sistema composto de duas sub-bandas. A injeção e detecção de polarização de spin na amostra foi realizada opticamente em uma configuração de bombeio-prova, através da técnica de microscopia de rotação de Kerr com resolução espacial e temporal. Induzindo deriva de spins pela aplicação de voltagens no plano da amostra, foram encontradas mobilidades de spin com valores próximos à mobilidade de carga e que podiam ser modificadas por voltagens aplicadas em um eletrodo de porta. Através de medidas dos campos spin-órbita gerados na amostra, foi possível a avaliação de sua relação com as velocidades de deriva, em comparação com o previsto por um modelo teórico. Dessas medidas puderam ser obtidos os coeficientes spin-órbita das interações de Rashba e Dresselhaus, em que ambos mostraram um comportamento de dependência com as velocidades de deriva não descrito pelo modelo utilizado, o que sugere que a magnitude das interações spin-órbita seja influenciada por essas velocidades. / Spintronics offers a paradigm of an electronics based on the electron spin, rather than its charge, for the manipulation and transport of information. In order that the concept of a spin transistor can be translated into a practical device, it is necessary to know the influence caused by the movement of spin-polarized electrons in the spin magnetization dynamics in a transport channel. In this sense, it was studied two-dimensional electron gases confined in a GaAs quantum well, symmetrically doped with Si, in a system composed of two subbands. Injection and detection of spin polarization in the sample was performed optically in a pump-probe configuration, using space and time resolved Kerr rotation microscopy technique. By the application of in-plane voltages inducing spin drift in the sample, spin mobilities were found with values close to the charge mobility and that could be modified by gate voltages. Through measures of the spin-orbit fields generated in the sample, it was possible to evaluate their relation with the drift velocities, in comparison with that predicted by a theoretical model. From these measures the spin-orbit coefficients of Rashba and Dresselhaus interactions could be obtained, in which both showed a dependence behavior with the drift velocities not described by the model used, suggesting that the magnitude of the spin-orbit interactions is influenced by these velocities.
165

Efeito Hall de spin em poços quânticos com acoplamento spin-órbita inter-subbanda / Spin Hall effect in quantum wells with intersubband spin-orbit coupling

Hachiya, Marco Antonio de Oliveira 19 February 2009 (has links)
A partir da teoria de resposta linear (formalismo de Kubo) calculamos a condutividade de spin $\\sigma_^$ para um gás bidimensional de elétrons formado num poço quântico com duas subbandas devido a atuação de um novo tipo de interação spin-órbita [Bernardes et al. \\textit{Phys. Rev. Lett.} \\textbf, 076603 (2007) \\& Calsaverini \\textit{et al}. \\textit{Phys. Rev. B} \\textbf, 155313 (2008)]. Este novo termo é não-nulo mesmo em estruturas simétricas e surge devido ao acoplamento entre os estados confinados no poço de paridades diferentes. Encontramos um valor para $\\sigma_^$ não-nulo e não-universal (dependente da intensidade do acoplamento $\\eta$) quando somente uma das subbandas está ocupada, ao contrário de Rashba. Para encontrarmos valores realistas para $\\sigma_^$, determinamos $\\eta$ via cálculo autoconsistente. Esse cálculo é executado para diferentes valores de densidade eletrônica em poços simples e duplos. Obtivemos que $\\sigma_^$ possui um comportamento não-monótono e sofre inversão de sinal como função da energia de Fermi (densidade de elétrons) conforme ela varia entre as duas subbandas. Contudo nossos resultados indicam que a condutividade Hall de spin é muito pequena $\\left(``\\ll \\frac{8\\pi}\"ight)$ nesses sistemas (poços simples e duplos) e possivelmente não mensurável. / Using the Kubo linear response theory, we investigate spin Hall conductivity $\\sigma_^$ in a two-dimensional electron gas in quantum wells with two subbands, when intersubband-induced spin-orbit coupling is operative [Bernardes et al. \\textit{Phys. Rev. Lett.} \\textbf, 076603 (2007) \\& Calsaverini \\textit{et al}. \\textit{Phys. Rev. B} \\textbf, 155313 (2008)]. This new spin-orbit term is non-zero even in symmetric structures and it arises from the distinct parity of the confined states. We find non-zero and non-universal $\\sigma_^$ (dependent on spin-orbit coupling strength $\\eta$) when only one of the subbands is occupied. This is in contrast to the Rashba spin-orbit interaction for which $\\sigma_^$ is identically zero. To obtain realistic values for $\\sigma_^$, we develop a self-consistent scheme to calculate $\\eta$. We performed this calcultion for different values of the eletronic density in single and double wells. We find that $\\sigma_^$ shows a non-monotonic behavior and a sign change as the Fermi energy (carrier density) varies between the two subband edges. However, our results indicate that $\\sigma_^$ is extremely small $\\left(``\\ll \\frac{8\\pi}\"ight)$ and possibly not measurable.
166

Interações Rashba e Dresselhaus induzidas por deriva de spin / Rashba and Dresselhaus Interactions Induced by Spin Drift

Ribeiro, Amina Solano Lopes 19 February 2018 (has links)
A spintrônica se beneficia do uso do grau de liberdade quântico que o elétron possui, o spin, para criar novos dispositivos eletrônicos exibindo novas funcionalidades. Para isso, foi estudado um gás de elétrons bidimensional confinado em um poço quântico de GaAs, dopado simetricamente com Si, contendo um sistema composto de duas subbandas no regime de espalhamento inter-subbanda forte. Utilizando-se técnicas de magnetotransporte, foi possível obter a mobilidade dos portadores de carga \\mu = 2:2 10^6cm^2/Vs bem como a densidade total ns = 6:9 10^11/cm^2. A amostra foi caracterizada opticamente através da técnica de rotação de Kerr com resolução temporal e espacial utilizando-se um esquema de bombeio-prova. Após a polarização de spin ser criada opticamente, ao aplicar um campo elétrico no material é produzida deriva de spins. Através de um modelo de deriva que incorpora a interação de Rashba e de Dresselhaus, além dos coeficientes intersubbanda, a dependência do campo spin-órbita com a velocidade de deriva foi avaliada. Encontramos um valor para a interação de Rashba dado por \\alpha = 0:7 meV Å e a influência do termo cúbico de Dresselhaus \\beta_3 na deriva de spins, como consequência do aquecimento da amostra devido à aplicação de altas correntes elétricas, nos possibilitou correlacionar a interação de Dresselhaus com a velocidade de deriva, obtendo-se um comportamento linear. / Spintronics takes advantage of the quantum spin degree of freedom to create new electronic devices with new functionalities. Therefore, it was studied a two-dimensional electron gas confined in a GaAs quantum well, symmetrically doped with Si, producing a two-subband system in the strong intersubband scattering regime. The sample was characterized using magnetotransport techniques, where we obtained the electron mobility as \\mu = 2:2 10^6 cm^2/Vs and total charge densities as ns = 6:9 10^11/cm^2. The sample was optically characterized using time and space resolved Kerr rotation through a pump-probe scheme. Moreover, after optically creating a spin polarization, spin drift is produced by applying an electric field on the material. Using a drift model incorporating Rashba and Dresselhaus term and inter-subband spin-orbit couplings, the spin-orbit fields and drift velocity dependence were evaluated. We found a value for Rashba interaction given by \\alpha = 0:7 meV Å and the influence of cubic Dresselhaus term \\beta_3 in spin drift, as consequence of sample heating due to high electrical currents applied, allowing to correlate Dresselhaus interaction with drift velocity, obtaining a linear behaviour.
167

Structural and magnetic properties of cobalt doped titanium dioxide. / CUHK electronic theses & dissertations collection

January 2008 (has links)
Cobalt doped anatase TiO2 films show room temperature ferromagnetism. Doping was provided by implantation using a MEVVA ion source. The enhancement of ferromagnetic properties was obtained by post-implantation annealing. The microstructure, magnetic properties and the dependence on the annealing conditions have being studied using various characterization techniques. Interestingly, the output referring to the saturation magnetization per Co atom with a value as high as 3.16 muB/Co atom, exceeds considerably that of the bulk cobalt which suggests that contribution to the overall magnetic behavior is not only a function of the concentration of inherently magnetic elements, but there must exist also sources of magnetisms. One of these sources are oxygen vacancies as discussed within this work. It is also interesting that instead of the more commonly observed hcp structure, the Co nanoclusters are found in fcc structure probably being stabilized by the TiO2 matrix. / In this work, we study the properties of cobalt-implanted titanium dioxide, a room temperature dilute ferromagnetic semiconductor discovered in 2001. The ferromagnetic interaction mechanism is however controversial. By using metal vapor vacuum arc (MEVVA) ion source, different doses of cobalt ions were implanted into anatase structures of titanium dioxide (TiO2) thin films. The TiO2 films which were sputtered on SiO2 (100nm)/Si (110) substrates and rutile structure of TiO2. The cobalt implanted TiO2 thin films were prepared with different atomic fraction and then thermally treated at different temperature after ion implantation. The structural properties of the anatase titanium dioxide were also studied as a comparison to rutile titanium dioxide. / Rutherford backscattering spectrometry (RBS) was performed to determine the composition of cobalt. The crystal structure of the thin films and rutile single crystal was mainly anatase as detected in XRD spectra. X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) were also used in sample analysis. Vibrating sample magnetometer (VSM) was employed to study the magnetic properties of the cobalt implanted films. Ferromagnetic behaviors of these films were observed at room temperature. / Semiconductor spintronics is a promising new field of study in the ongoing quest to make electronic devices faster, cheaper, and more efficient. While current spintronics utilize the spin property of electrons to achieve greater functionally, the integration of spintronics into conventional semiconductor electronics will lead to advances optoelectronics, quantum computing, and other emerging fields of technology. This integration relies on effective generation; injection, transport, and detection of spin polarized electron current. To these end, mastering synthesis of room temperature ferromagnetic semiconductors is inevitable. / Luk, Wing Yan. / Adviser: H. P. Ho. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3730. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
168

Current-induced torques in ferromagnets at room temperature

Fang, Zhou January 2017 (has links)
This thesis uses ferromagnetic resonance to explore the current-induced torques (CITs) in two different systems, namely YIG/heavy metal bilayers and bulk NiMnSb, at room temperature. We apply a microwave current to the sample while sweeping the external magnetic field, and measure the longitudinal DC voltage. From a symmetry analysis of the ferromagnetic resonance lineshape, the amplitudes and directions of the CITs parameterised by an effective magnetic field are accurately estimated. In Chapter 4, YIG samples of different thickness, capped by either Pt or Ta, are studied. The resonance is driven by both spin-transfer torque and Oersted field, and the DC voltage is attributed to both spin rectification and spin pumping. The CITs can be well analysed from the lineshape of the voltage and its dependence on YIG thickness, from which we deduce that the Oersted field dominates over the spin-transfer torque in driving magnetization dynamics. In Chapter 5, we characterise the CITs in bulk NiMnSb induced by the relativistic spin-orbit coupling effect. Both field-like and antidamping-like spin-orbit torques are observed and analysed in detail. At the end of this chapter, we study the spin-wave resonance driven by the CITs, from which the exchange stiffness of NiMnSb is determined. In Chapter 6, we extrapolate a new form of magnetoresistance in NiMnSb: unidirectional spin-orbit magnetoresistance (USOMR). USOMR scales linearly with the current and has opposite sign when the magnetization is reversed. Similar to the giant magnetoresistance in magnetic multilayers, USOMR can be used to distinguish between two opposite magnetization directions directly in the bulk of the ferromagnet.
169

Advanced Quantum Electronic and Spin Systems: Artificial Graphene and Nitrogen-Vacancy Centers in Diamond

Scarabelli, Diego January 2016 (has links)
When nature is observed at the nanoscale, quantum physics is typically the most accurate model to describe and predict its behavior. Furthermore, quantum effects are increasingly at the core of the operation of new advanced electronic and photonic devices, which, in some cases, are designed on the basis of controlling quantum systems. This thesis focuses on two such systems, united by the methods used to realize them. These methods represent the cutting-edge of nanofabrication, which is the structuring of matter at ultra-small dimensions with a degree of precision and control that has not been previously attained. Pushing these methods to their limits enables the emergence of unique phenomena in the quantum systems explored here. The first system involves the realization of artificial graphene in an AlGaAs/GaAs quantum heterostructure. The appearance of massless charge carriers in graphene, which are described by the relativistic Dirac equation, originates from the linear energy-momentum dispersion of the electronic states in proximity to the K and K’ points of the hexagonal Brillouin zone. This unique quantum behavior is a direct result of the honeycomb symmetry of the graphene lattice. The prospect of reproducing this physics in an adjustable, artificial honeycomb lattice, known as artificial graphene, offers a platform for the exploration of novel quantum regimes of massless Dirac fermions beyond the limits imposed by the inability to manipulate the lattice of the natural material. The electronic properties of a two-dimensional electron gas whose density is modulated by a periodic potential with honeycomb symmetry have been predicted to generate massless Dirac-fermions with tunable Fermi velocity. This thesis reports the observation of a graphene-like band structure in a modulation-doped AlGaAs/GaAs quantum well engineered with a honeycomb lateral surface superlattice. This was accomplished by reactive ion etching of the surface to within a few tens of nanometers from the quantum well. A metal hard-mask, patterned by electron beam lithography combined with metal deposition and lift-off, was used to form a honeycomb artificial lattice with a variable lattice period, down to 40 nm. This is a three-fold reduction with respect to the smallest reported to date in pertinent literature. The BCl3-based shallow etching produces cylindrical pillars below which the two-dimensional electron gas is expected to form quantum dots, where the electron density is higher than in the surrounding etched regions. Low-temperature resonant inelastic light scattering measurements reveal new electronic transitions. An accurate interpretation of these can be found in the joint density of states derived from the calculated graphene-like linearly-dispersed energy bands, induced by the honeycomb potential modulation. The second system comprises the nanoscale engineering of individual electron spin qubits in diamond. Spin systems in solid-state have been intensively investigated as an outstanding pathway towards quantum information processing. One of the advantages of solid-state spintronics is the possibility of applying nanofabrication techniques commonly used by the semiconductor industry to produce and integrate spin qubits. The negatively charged nitrogen-vacancy (NV-) center in diamond stands out because of its optically addressable spin, which shows long coherence time and viable spin initiation, manipulation and read-out. A central challenge has been the positioning of NV- centers with nanometer scale control, that would allow for efficient and consistent dipolar coupling and the integration within an optoelectronic device. I demonstrate a method for chip-scale fabrication of arrays of closely-spaced NV- centers with record spatial localization of approximately 10 nm in all three dimensions and controllable inter-NV spacing as small as 40 nm. This is the highest spatial resolution realized to date in positioning NV- centers at the nanoscale with high throughput, and approaches the length scale of strong dipolar coupling. This method used masked implantation of nitrogen in an ultra-pure CVD-grown diamond substrate through nano-apertures in a thin gold film, patterned via electron-beam lithography and dry etching. The high-density and high-atomic weight of gold results in a mask which is significantly thinner than polymer films used in other works, whilst still successfully impeding ion penetration, with a mask contrast of more than 40 dB. This process allows for the creation of apertures with lower aspect ratio which are therefore easier to pattern in close proximity to one another, i.e., within the dipolar coupling range. The position and spin coherence properties of the resulting near-surface NVs were measured through wide-field super-resolution optically detected magnetic resonance imaging, Hahn echo and CPMG pulsed microwave spectroscopy. The patterning methodology demonstrated here is optimally suited to functional integration with plasmonic nanostructures, which can enhance our ability to control single-photon emission with the prospect of creating near-surface nanoscale sensors of electric or magnetic fields and quantum optoelectronic devices.
170

Energy-efficient Memory System Design with Spintronics

Ashish Ranjan (5930180) 03 January 2019 (has links)
<p>Modern computing platforms, from servers to mobile devices, demand ever-increasing amounts of memory to keep up with the growing amounts of data they process, and to bridge the widening processor-memory gap. A large and growing fraction of chip area and energy is expended in memories, which face challenges with technology scaling due to increased leakage, process variations, and unreliability. On the other hand, data intensive workloads such as machine learning and data analytics pose increasing demands on memory systems. Consequently, improving the energy-efficiency and performance of memory systems is an important challenge for computing system designers.</p> <p>Spintronic memories, which offer several desirable characteristics - near-zero leakage, high density, non-volatility and high endurance - are of great interest for designing future memory systems. However, these memories are not drop-in replacements for current memory technologies, viz. Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). They pose unique challenges such as variable access times, and require higher write latency and write energy. This dissertation explores new approaches to improving the energy efficiency of spintronic memory systems.</p> <p>The dissertation first explores the design of approximate memories, in which the need to store and access data precisely is foregone in return for improvements in energy efficiency. This is of particular interest, since many emerging workloads exhibit an inherent ability to tolerate approximations to their underlying computations and data while still producing outputs of acceptable quality. The dissertation proposes that approximate spintronic memories can be realized either by reducing the amount of data that is written to/read from them, or by reducing the energy consumed per access. To reduce memory traffic, the dissertation proposes approximate memory compression, wherein a quality-aware memory controller transparently compresses/decompresses data written to or read from memory. For broader applicability, the quality-aware memory controller can be programmed to specify memory regions that can tolerate approximations, and conforms to a specified error constraint for each such region. To reduce the per-access energy, various mechanisms are identified at the circuit and architecture levels that yield substantial energy benefits at the cost of small probabilities of read, write or retention failures. Based on these mechanisms, a quality-configurable Spin Transfer Torque Magnetic RAM (STT-MRAM) array is designed in which read/write operations can be performed at varying levels of accuracy and energy at runtime, depending on the needs of applications. To illustrate the utility of the proposed quality-configurable memory array, it is evaluated as an L2 cache in the context of a general-purpose processor, and as a scratchpad memory for a domain-specific vector processor.</p> <p>The dissertation also explores the design of caches with Domain Wall Memory (DWM), a more advanced spintronic memory technology that offers unparalleled density arising from a unique tape-like structure. However, this structure also leads to serialized access to the bits in each bit-cell, resulting in increased access latency, thereby degrading overall performance. To mitigate the performance overheads, the dissertation proposes a reconfigurable DWM-based cache architecture that modulates the active bits per tape with minimal overheads depending on the application's memory access characteristics. The proposed cache is evaluated in a general purpose processor and improvements in performance are demonstrated over both CMOS and previously proposed spintronic caches.</p> <p>In summary, the dissertation suggests directions to improve the energy efficiency of spintronic memories and re-affirms their potential for the design of future memory systems.</p>

Page generated in 0.062 seconds