• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 55
  • 45
  • 19
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 411
  • 411
  • 119
  • 87
  • 61
  • 60
  • 55
  • 50
  • 50
  • 47
  • 44
  • 42
  • 41
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Development of a Generalized Structural Dynamics Computer Program

Simmons, Val E. 01 August 1968 (has links)
The purpose of this thesis was the development of a generalized structural-dynamics computer program to calculate the response of multi-degree-of-freedom systems. The user of this computer program, having a limited background in matrix algebra and vibrational analysis, can gain numerical and graphical information concerning the dynamic response of multi-degree-of-freedom structures. The user, with a minimal amount of FORTRAN experience, will find this thesis ideally suited for his needs.
242

Cyclic Behavior of Screen Grid Insulated Concrete Form Components

Werner, Carl Scott 01 January 2010 (has links)
The principle of sustainability in the built environment has become much more significant in the past decade, resulting in a push to develop building systems that are more energy efficient, durable, and use fewer natural resources. For residential and light commercial buildings, insulated concrete forms (ICF) have enjoyed increasing popularity for their ability to meet these new demands. ICFs are a stay-in-place concrete formwork system for building structural walls that are also highly insulated, among other benefits. Screen-grid ICFs (SGICF) are a small subset of ICFs that tend to use less concrete than standard ICFs and are sometimes made of recycled materials. These traits make SGICFs attractive, but there is a lack of understanding of their structural characteristics due to their irregular internal concrete structure. Because of this, structures using SGICFs are limited to heights no higher than two stories. Further study should show whether SGICFs structures can safely built to greater heights. This investigation studied two types of SGICFs at a component level in order to gain understanding of their lateral force and drift ratio capacities under cyclic loading. Several variables, including steel reinforcement details, the type of concrete, and the presence of the forms, were altered to measure their impact on the performance of the systems. Test results suggested that the ICF formwork increased lateral strength by up to 100% and lateral deformation capacity by up 60% when compared to identical specimens tested with the formwork removed. Results also showed that confinement of the cement, either by mesh hoops, spiral wire, or fiber-reinforced concrete improved the drift ratio at failure up to 500% when compared to specimens with no confinement material. Computer models were created to gauge their ability to replicate the behavior of the experimental test results. The models typically overestimated the lateral load resistance of the samples by 50-100%, and even more in some cases, depending on the reinforcement. The models were not reliable in determining the drift ratio at which the sample was considered to have failed. In some cases the model failed at 50% lower lateral deformations than the test specimen, while in others the model did not fail at all. Future studies should explore refinements of the models to increase their accuracy and usefulness, as well as accounting for the contributions do to the form material. Future studies should also include using spiral wires, mesh hoops, or fiber reinforced concrete in full-scale walls to verify their efficacy in improving overall wall performance.
243

Determination of earthquake intensities from chimney damage reports

Ho, Alan Darrell January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Alan Darrell Ho. / M.S.
244

Surrogate Models for Seismic Response of Structures

Sanjay Nayak (16760970) 04 August 2023 (has links)
<p>The seismic risks to a structure or a set of structures in a region are usually determined by generating fragility curves that provide the probability of a building responding in a certain manner for a given level of ground motion intensity. Developing fragility curves, however, is challenging as it involves the computationally expensive task of obtaining the maximum response of the selected structures to a suite of ground motions representing the seismic hazard of the region selected. </p><p>This study presents a methodology to develop surrogate models for the prediction of the maximum responses of buildings to ground motion excitation. Data-driven surrogate models using simple machine learning techniques and physics-based surrogate models using the space mapping technique to map the low-fidelity responses obtained using a multi-degree of freedom shear building model to the high-fidelity values are developed for the prediction of the maximum roof drift ratio and the maximum story drift ratio of a chosen 15-story steel moment-resisting frame building with varying structural properties in California. The predictions of each of these surrogate models are analyzed to assess and compare the performance, capabilities, and limitations of these models. Best practices for developing surrogate models for the prediction of maximum responses of structures to ground motion are recommended.</p><p>The results from the development of data-driven surrogate models show that the spectral displacement is the best intensity measure to condition the maximum roof drift ratio, and the spectral velocity is the best intensity measure to condition the maximum story drift ratio. Fragility analysis of the structure is thus conducted using maximum story drift as the engineering demand parameter and spectral velocity as the intensity measure. Monte Carlo simulation is conducted using the physics-based surrogate model to estimate the maximum story drifts for ground motions that are incrementally scaled to different intensity levels. Maximum likelihood estimates are used to obtain the parameters for a lognormal distribution and the 95% confidence intervals are obtained using the Wald confidence interval to plot the fragility curves.</p><p>Fragility curves are plotted both with and without variations in the structural properties of the building, and it is found that the effects of variability in ground motions on the fragility are far higher than the effects of the randomness of structural properties. Finally, it is found that about 65 ground motion records are needed for convergence of the parameters of the lognormal distribution for plotting fragility curves by using Monte Carlo simulation.</p>
245

The Use of the Proper Orthogonal Decomposition for the Characterization of the Dynamic Response of Structures Due to Wind Loading

Flores Vera, Rafael January 2011 (has links)
This thesis presents a study of the wind load forces and their influence on the response of structures. The study is based on the capacity of the Proper Orthogonal Decomposition method (POD) to identify and extract organized patterns that are hidden or embedded inside a complex field. Technically this complex field is defined as a multi-variate random process, which in wind engineering is represented by unsteady pressure signals recorded on multiple points of the surface of a structure. The POD method thus transforms the multi-variate random pressure field into a sequence of load shapes that are uncorrelated with each other. The effect of each uncorrelated load shape on the structural response is relatively easy to evaluate and the individual contributions can be added linearly afterwards. Additionally, since each uncorrelated load shape is associated with a percentage of the total energy involved in the loading process, it is possible to neglect those load shapes with low energy content. Furthermore, the load shapes obtained with the POD often reveal physical flow structures, like vortex shedding, oscillations of shear layers, etc. This later property can be used in conjunction with classical results in fluid mechanics to theorize about the physical nature of different flow mechanics and their interactions. The POD method is well suited to be used in conjunction with the classical modal analysis, not only to calculate the structural response for a given pressure field but to observe the details of the wind-structure interaction. A detailed and complete application is presented here but the methodology is very general since it can be applied to any recorded pressure field and for any type of structure.
246

Dynamic Assessment of Footbridges : A designer's method to estimate running induced vibrations

Södergren, Jones, Barraza, Anton January 2018 (has links)
Dynamic problems in footbridges, such as sensible vibrations caused by human induced loading, has on a number of occasions been observed. These vibrations are rarely an ultimate limit state problem, but can be perceived as unpleasant by the pedestrian. In design guidelines there are propositions for how to asses the dynamic problem. However, they only take the walking load into account. It has been shown that, in the case of a running load, accelerations that lie above the comfort zone can occur and that running loads are more severe than walking loads in some cases. It is possible that the running load case has to be considered in future guidelines, and finding a feasible design methodology demands a lot of work. In this thesis, a method aimed to be easily used by a designer is analyzed. The amplitude of acceleration received as a result from a dynamic analysis in a commercial FEM software, was reduced by reduction factors to generate accelerations closer to reality. This could be identified and verified against recommendations.
247

Aeroelastic Analysis of Small-Scale Aircraft

Roberts, Kent 01 March 2022 (has links) (PDF)
The structural design of flight vehicles is a balancing act between maximizing loading capability while minimizing weight. An engineer must consider not only the classical static structural yielding failure of a vehicle, but a variety of ways in which structural deformations can in turn, affect the loading conditions driving those deformations. Lift redistribution, divergence, and flutter are exactly such dynamic aeroelastic phenomena that must be properly characterized during the design of a vehicle; to do otherwise is to risk catastrophe. Relevant within the university context is the design of small-scale aircraft for student projects and of particular consideration, the DBF competition hosted by AIAA. This work implements a variety of aeroelastic analysis methods: K and PK with Theodorsen aerodynamics via Matlab, NASA EZASE, and the FEMAP NX NASTRAN Aeroelasticity Package. These techniques are applied to a number of baseline test cases in addition to two representative DBF wings. Both wings considered ultimately indicated stability within reasonable flight conditions, although each for a different reason. Analysis results for the Cal Poly 2020 wing, a spar-rib construction emblematic of the collocation design approach, showed that the wing was stable within expected flight regions. The USC 2020 wing model, a composite top spar construction, exhibited unstable behavior, however this was well outside the scope of expected flight conditions. The codebase developed as a part of this work will serve as a foundation for future student teams to perform aeroelastic analyses of their own and support continued aeroelastic research at Cal Poly - SLO.
248

Using Incremental Dynamic Analysis to Visualize the Effects of Viscous Fluid Dampers on Steel Moment Frame Drift

Kruep, Stephanie Jean 11 September 2007 (has links)
This thesis presents the details of a study regarding both the use of linear viscous fluid dampers in controlling the interstory drift in steel moment frames, and the use of incremental dynamic analysis as a method of visualizing the behavior of these moment frames when subjected to seismic load effects. Models of three story and nine story steel moment frames were designed to meet typical strength requirements for office buildings in Seattle, Washington. These models were intentionally designed to violate seismic interstory drift restrictions to test the ability of the linear viscous fluid dampers to reduce these drifts to the point of code compliance. Dampers were included in one bay of every story in each model. These devices were used to produce total structural damping ratios of 5%, 10%, 20%, and 30% of critical. Undamped, traditional stiffness controlled models of both three stories and nine stories were also created for comparison purposes. Incremental dynamic analysis was used to subject these models to ten ground motions, each scaled to twenty incremental levels. Two new computer applications were written to facilitate this process. The results of these analyses were studied to determine if the linear viscous fluid dampers were able to cause compliance with codified drift limits. Also, incremental dynamic analysis plots were created to examine the effects of the dampers on structural behavior as damping increased from inherent to 30% of critical. It was found that including linear viscous fluid dampers in steel moment frame design can satisfactorily control interstory drift, and incremental dynamic analysis is a beneficial tool in visualizing dynamic structural behavior. / Master of Science
249

Utilizing Embedded Sensing for the Development of Piezoresistive Elastodynamics

Julio Andres Hernandez (14684092) 21 July 2023 (has links)
<p>Obtaining full-field \emph{dynamic} material state awareness would have profound and wide-ranging implications across many fields and disciplines. For example, achieving dynamic state awareness in soft tissues could lead to the early detection of pathophysiological conditions. Applications in geology and seismology could enhance the accuracy of locating mineral and hydrocarbon resources for extraction or unstable subsurface formations. Ensuring safe interaction at the human-machine interfaces in soft robotic applications is another example. And as a final representative example, knowing real-time material dynamics in safety-critical structures and infrastructure can mitigate catastrophic failures. Because many materials (e.g., carbon fiber-reinforced polymers composites, ceramic matrix composites, biological tissues, cementitious and geological materials, and nanocomposites) exhibit coupling between their mechanical state and electrical transport characteristics, self-sensing via the piezoresistive effect is a potential gateway to these capabilities. While piezoresistivity has been mostly explored in static and quasi-static conditions, using piezoresistivity to achieve dynamic material state awareness is comparatively unstudied. Herein lies the significant gap in the state of the art: the piezoresistive effect has yet to be studied for in-situ dynamic sensing.</p> <p><br></p> <p>In this thesis, the gap in the state of the art is addressed by studying the piezoresistive effect of carbon nanocomposites subject to high-rate and transient elastic loading. Nanocomposites were chosen merely as a representative self-sensing material in this study because of their ease of manufacturability and our good understanding of their electro-mechanical coupling. Slender rods were manufactured using epoxy, modified with a small weight fraction of nanofillers such as carbon black (CB), carbon nanofibers (CNFs), and multi-walled carbon nanotubes (MWCNTs), and subject to loading states such as steady-state vibration at structural frequencies ($10^2-10^4$ Hz), controlled wave packet excitation, and high-strain rate impact loading in a split-Hopkinson pressure bar. This work discovers foundational principles for dynamic material state awareness through piezoresistivity. </p> <p><br></p> <p>Three major scholarly contributions are made in this dissertation. First, an investigation was pursued to establish dynamic, high-strain rate sensing. This investigation clearly demonstrated the ability of piezoresistivity to accurately track rapid and spatially-varying deformation for strain rates up to $10^2$ s$^{-1}$. Second, piezoresistivity was used to detect steady-state vibrations common at structural frequencies. Utilizing simple signal processing techniques, it was possible to extract the excitation frequency embedded into the collected electrical measurements. The third contribution examined the dynamic piezoresistive effect through an array of surface-mounted electrodes on CNF/epoxy rods subject to highly-controlled wave packet excitation. Electrode-spacing adjustments were found to induce artificial signal filtering by containing larger portions of the injected wave packets. The strain state in the rod was found after employing an inverse conductivity-to-mechanics model, thereby demonstrating the possibility of deducing actual in-situ strains via this technique. A digital twin in ABAQUS was constructed, and an elastodynamic simulation was conducted using identical dynamic loading, the results of which showed very good agreement with the piezo-inverted strains. </p> <p><br></p> <p>This work creates the first intellectual pathway to full-field dynamic embedded sensing. This work has far-reaching potential applications in many fields, as numerous materials exhibit self-sensing characteristics through deformation-dependent changes to electrical properties. Therefore, \emph{piezoresistive elastodynamics} has the incredible potential to be applied not just in structural applications but in other potentially innovated applications where measuring dynamic behavior through self-sensing materials is possible.  </p>
250

Bootstrapping & Separable Monte Carlo Simulation Methods Tailored for Efficient Assessment of Probability of Failure of Dynamic Systems

Jehan, Musarrat January 2014 (has links)
No description available.

Page generated in 0.0491 seconds