Spelling suggestions: "subject:"[een] TAYLOR EXPANSION"" "subject:"[enn] TAYLOR EXPANSION""
1 |
Stochastic Differential Equations : and the numerical schemes used to solve themLiljas, Erik January 2014 (has links)
This thesis explains the theoretical background of stochastic differential equations in one dimension. We also show how to solve such differential equations using strong It o-Taylor expansion schemes over large time grids. We also attempt to solve a problem regarding a specific approximation of a stochastic integral for which there is no explicit solution. This approximation, which utilizes the distribution of this particular stochastic integral, gives the wrong order of convergence when performing a grid convergence study. We use numerical integration of the stochastic integral as an alternative approximation, which is correct with regards to convergence.
|
2 |
Approximation for Quantile Using Taylor ExpansionChiou, Sheng-Yu 03 July 2012 (has links)
Quantile is a basic and an important quantity of a random variable. In some distributions, their quantiles have closed-form expressions. However, for many continuous distributions, the closed-form expressions of their quantiles do not exist. Yu and Zelterman (2011) and Chang (2004) have proposed an approximation of quantiles. In this paper, we propose an improved method which is combined the Taylor expansion with Newton¡¦s method. Some examples are given to compare the computing time of the method we proposed with the methods in Yu and Zelterman (2011) and Chang (2004).
|
3 |
Cubature methods and applications to option pricingMatchie, Lydienne 12 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: In this thesis, higher order numerical methods for weak approximation of solutions
of stochastic differential equations (SDEs) are presented. They are
motivated by option pricing problems in finance where the price of a given
option can be written as the expectation of a functional of a diffusion process.
Numerical methods of order at most one have been the most used so far and
higher order methods have been difficult to perform because of the unknown
density of iterated integrals of the d-dimensional Brownian motion present in
the stochastic Taylor expansion. In 2001, Kusuoka constructed a higher order
approximation scheme based on Malliavin calculus. The iterated stochastic
integrals are replaced by a family of finitely-valued random variables whose
moments up to a certain fixed order are equivalent to moments of iterated
Stratonovich integrals of Brownian motion. This method has been shown to
outperform the traditional Euler-Maruyama method. In 2004, this method
was refined by Lyons and Victoir into Cubature on Wiener space. Lyons and
Victoir extended the classical cubature method for approximating integrals
in finite dimension to approximating integrals in infinite dimensional Wiener
space. Since then, many authors have intensively applied these ideas and the
topic is today an active domain of research. Our work is essentially based on
the recently developed higher order schemes based on ideas of the Kusuoka
approximation and Lyons-Victoir “Cubature on Wiener space” and mostly applied
to option pricing. These are the Ninomiya-Victoir (N-V) and Ninomiya-
Ninomiya (N-N) approximation schemes. It should be stressed here that many
other applications of these schemes have been developed among which is the
Alfonsi scheme for the CIR process and the decomposition method presented
by Kohatsu and Tanaka for jump driven SDEs.
After sketching the main ideas of numerical approximation methods in
Chapter 1 , we start Chapter 2 by setting up some essential terminologies
and definitions. A discussion on the stochastic Taylor expansion based on
iterated Stratonovich integrals is presented, we close this chapter by illustrating
this expansion with the Euler-Maruyama approximation scheme. Chapter 3
contains the main ideas of Kusuoka approximation scheme, we concentrate on
the implementation of the algorithm. This scheme is applied to the pricing of
an Asian call option and numerical results are presented. We start Chapter 4
by taking a look at the classical cubature formulas after which we propose in a simple way the general ideas of “Cubature on Wiener space” also known as
the Lyons-Victoir approximation scheme. This is an extension of the classical
cubature method. The aim of this scheme is to construct cubature formulas for
approximating integrals defined on Wiener space and consequently, to develop
higher order numerical schemes. It is based on the stochastic Stratonovich
expansion and can be viewed as an extension of the Kusuoka scheme. Applying
the ideas of the Kusuoka and Lyons-Victoir approximation schemes, Ninomiya-
Victoir and Ninomiya-Ninomiya developed new numerical schemes of order 2,
where they transformed the problem of solving SDE into a problem of solving
ordinary differential equations (ODEs). In Chapter 5 , we begin by a general
presentation of the N-V algorithm. We then apply this algorithm to the pricing
of an Asian call option and we also consider the optimal portfolio strategies
problem introduced by Fukaya. The implementation and numerical simulation
of the algorithm for these problems are performed. We find that the N-V
algorithm performs significantly faster than the traditional Euler-Maruyama
method. Finally, the N-N approximation method is introduced. The idea
behind this scheme is to construct an ODE-valued random variable whose
average approximates the solution of a given SDE. The Runge-Kutta method
for ODEs is then applied to the ODE drawn from the random variable and
a linear operator is constructed. We derive the general expression for the
constructed operator and apply the algorithm to the pricing of an Asian call
option under the Heston volatility model. / AFRIKAANSE OPSOMMING: In hierdie proefskrif, word ’n hoërorde numeriese metode vir die swak benadering
van oplossings tot stogastiese differensiaalvergelykings (SDV) aangebied.
Die motivering vir hierdie werk word gegee deur ’n probleem in finansies, naamlik
om opsiepryse vas te stel, waar die prys van ’n gegewe opsie beskryf kan word
as die verwagte waarde van ’n funksionaal van ’n diffusie proses. Numeriese
metodes van orde, op die meeste een, is tot dus ver in algemene gebruik. Dit is
moelik om hoërorde metodes toe te pas as gevolg van die onbekende digtheid
van herhaalde integrale van d-dimensionele Brown-beweging teenwoordig in
die stogastiese Taylor ontwikkeling. In 2001 het Kusuoka ’n hoërorde benaderings
skema gekonstrueer wat gebaseer is op Malliavin calculus. Die herhaalde
stogastiese integrale word vervang deur ’n familie van stogastiese veranderlikes
met eindige waardes, wat se momente tot ’n sekere vaste orde bestaan. Dit is
al gedemonstreer dat hierdie metode die tradisionele Euler-Maruyama metode
oortref. In 2004 is hierdie metode verfyn deur Lyons en Victoir na volumeberekening
op Wiener ruimtes. Lyons en Victoir het uitgebrei op die klassieke
volumeberekening metode om integrale te benader in eindige dimensie na die
benadering van integrale in oneindige dimensionele Wiener ruimte. Sedertdien
het menige outeurs dié idees intensief toegepas en is die onderwerp vandag
’n aktiewe navorsings gebied. Ons werk is hoofsaaklik gebaseer op die onlangse
ontwikkelling van hoërorde skemas, wat op hul beurt gebaseer is op die
idees van Kusuoka benadering en Lyons-Victoir "Volumeberekening op Wiener
ruimte". Die werk word veral toegepas op die prysvastelling van opsies, naamlik
Ninomiya-Victoir en Ninomiya-Ninomiya benaderings skemas. Dit moet
hier beklemtoon word dat baie ander toepassings van hierdie skemas al ontwikkel
is, onder meer die Alfonsi skema vir die CIR proses en die ontbinding
metode wat voorgestel is deur Kohatsu en Tanaka vir sprong aangedrewe SDVs.
Na ’n skets van die hoof idees agter metodes van numeriese benadering in Hoofstuk
1 , begin Hoofstuk 2 met die neersetting van noodsaaklike terminologie
en definisies. ’n Diskussie oor die stogastiese Taylor ontwikkeling, gebaseer op
herhaalde Stratonovich integrale word uiteengeset, waarna die hoofstuk afsluit
met ’n illustrasie van dié ontwikkeling met die Euler-Maruyama benaderings
skema. Hoofstuk 3 bevat die hoofgedagtes agter die Kusuoka benaderings
skema, waar daar ook op die implementering van die algoritme gekonsentreer
word. Hierdie skema is van toepassing op die prysvastelling van ’n Asiatiese call-opsie, numeriese resultate word ook aangebied. Ons begin Hoofstuk 4 deur
te kyk na klassieke volumeberekenings formules waarna ons op ’n eenvoudige
wyse die algemene idees van "Volumeberekening op Wiener ruimtes", ook bekend
as die Lyons-Victoir benaderings skema, as ’n uitbreiding van die klassieke
volumeberekening metode gebruik. Die doel van hierdie skema is om volumeberekening
formules op te stel vir benaderings integrale wat gedefinieer is op
Wiener ruimtes en gevolglik, hoërorde numeriese skemas te ontwikkel. Dit is
gebaseer op die stogastiese Stratonovich ontwikkeling en kan beskou word as
’n ontwikkeling van die Kusuoka skema. Deur Kusuoka en Lyon-Victoir se
idees oor benaderings skemas toe te pas, het Ninomiya-Victoir en Ninomiya-
Ninomiya nuwe numeriese skemas van orde 2 ontwikkel, waar hulle die probleem
omgeskakel het van een waar SDVs opgelos moet word, na een waar
gewone differensiaalvergelykings (GDV) opgelos moet word. Hierdie twee skemas
word in Hoofstuk 5 uiteengeset. Alhoewel die benaderings soortgelyk is, is
daar ’n beduidende verskil in die algoritmes self. Hierdie hoofstuk begin met ’n
algemene uiteensetting van die Ninomiya-Victoir algoritme waar ’n arbitrêre
vaste tyd horison, T, gebruik word. Dié word toegepas op opsieprysvastelling
en optimale portefeulje strategie probleme. Verder word numeriese simulasies
uitgevoer, die prestasie van die Ninomiya-Victoir algoritme was bestudeer en
vergelyk met die Euler-Maruyama metode. Ons maak die opmerking dat die
Ninomiya-Victoir algoritme aansienlik vinniger is. Die belangrikste resultaat
van die Ninomiya-Ninomiya benaderings skema word ook voorgestel. Deur die
idee van ’n Lie algebra te gebruik, het Ninomiya en Ninomiya ’n stogastiese
veranderlike met GDV-waardes gekonstrueer wat se gemiddeld die oplossing
van ’n gegewe SDV benader. Die Runge-Kutta metode vir GDVs word dan
toegepas op die GDV wat getrek is uit die stogastiese veranderlike en ’n lineêre
operator gekonstrueer. ’n Veralgemeende uitdrukking vir die gekonstrueerde
operator is afgelei en die algoritme is toegepas op die prysvasstelling van ’n
Asiatiese opsie onder die Heston onbestendigheids model.
|
4 |
Estimation methods for Asian Quanto Basket optionsAdolfsson, David, Claesson, Tom January 2019 (has links)
All financial institutions that provide options to counterparties will in most cases get involved withMonte Carlo simulations. Options with a payoff function that depends on asset’s value at differenttime points over its lifespan are so called path dependent options. This path dependency impli-cates that there exists no parametric solution and the price must hence be estimated, it is hereMonte Carlo methods come into the picture. The problem though with this fundamental optionpricing method is the computational time. Prices fluctuate continuously on the open market withrespect to different risk factors and since it’s impossible to re-evaluate the option for all shifts dueto its computing intensive nature, estimations of the option price must be used. Estimating theprice from known points will of course never produce the same result as a full re-evaluation but anestimation method that produces reliable results and greatly reduces computing time is desirable.This thesis will evaluate different approaches and try to minimize the estimation error with respectto a certain number of risk factors.This is the background for our master thesis at Swedbank. The goal is to create multiple estima-tion methods and compare them to Swedbank’s current estimation model. By doing this we couldpotentially provide Swedbank with improvement ideas regarding some of its option products andrisk measurements. This thesis is primarily based on two estimation methods that estimate optionprices with respect to two variable risk factors, the value of the underlying assets and volatility.The first method is a grid that uses a second order Taylor expansion and the sensitivities delta,gamma and vega. The other method uses a grid of pre-simulated option prices for different shiftsin risk factors. The interpolation technique that is used in this method is calledPiecewise CubicHermiteinterpolation. The methods (or referred to as approaches in the report) are implementedto handle a relative change of 50 percent in the underlying asset’s index value, which is the firstrisk factor. Concerning the second risk factor, volatility, both methods estimate prices for a 50percent relative downward change and an upward change of 400 percent from the initial volatility.Should there emerge even more extreme market conditions both methods use linear extrapolationto estimate a new option price.
|
5 |
Cubature on Wiener Space for the Heath--Jarrow--Morton frameworkMwangota, Lutufyo January 2019 (has links)
This thesis established the cubature method developed by Gyurkó & Lyons (2010) and Lyons & Victor (2004) for the Heath–Jarrow–Morton (HJM) model. The HJM model was first proposed by Heath, Jarrow, and Morton (1992) to model the evolution of interest rates through the dynamics of the forward rate curve. These dynamics are described by an infinite-dimensional stochastic equation with the whole forward rate curve as a state variable. To construct the cubature method, we first discretize the infinite dimensional HJM equation and thereafter apply stochastic Taylor expansion to obtain cubature formulae. We further used their results to construct cubature formulae to degree 3, 5, 7 and 9 in 1-dimensional space. We give, a considerable step by step calculation regarding construction of cubature formulae on Wiener space.
|
6 |
D-optimal designs for combined polynomial and trigonometric regression on a partial circleLi, Chin-Han 30 June 2005 (has links)
Consider the D-optimal designs for a combined polynomial of degree d and trigonometric of order m regression on a partial circle [see Graybill (1976), p. 324]. It is shown that the structure of the optimal design depends only on
the length of the design interval and that the support points are analytic functions of this parameter. Moreover, the Taylor expansion of the optimal support points can be determined efficiently by a recursive procedure.
|
7 |
Essays on numerical solutions to forward-backward stochastic differential equations and their applications in financeZhang, Liangliang 30 October 2017 (has links)
In this thesis, we provide convergent numerical solutions to non-linear forward-BSDEs (Backward Stochastic Differential Equations). Applications in mathematical finance, financial economics and financial econometrics are discussed. Numerical examples show the effectiveness of our methods.
|
8 |
Advanced methods for pricing financial derivatives in a market modelwith two stochastic volatilitiesFolajin, Victor January 2021 (has links)
This thesis is on an advanced method for pricing financial derivatives in a market model,which comprises two stochastic volatilities. Financial derivatives are instruments whosethat is related to any financial asset. Underlying assets in derivatives are mostly financialinstruments; such as security, currency or a commodity. Stochastic volatilities are used infinancial mathematics to assess financial derivative securities; such as contingent claims andoptions for valuation of the derivatives, at the expiration of the contract. This study examinedtheoretical frameworks that evolve around the pricing of financial deriv- atives in a marketmodel and it mainly examines two stochastic volatilities: cubature formula and splittingmethod by analysing how these volatilities affect the pricing of financial derivatives. The studydeveloped an approximation approach with a double stochastic volatilities model in termsof Stratonovich integrals to evaluate the contingent claim, examined the similarities betweenNinomiya–Ninomiya scheme and Ninomiya–Victoir scheme, and rewrite the system of doublestochastic volatility model in terms of the standard Brownian motion.
|
9 |
A-optimal designs for weighted polynomial regressionSu, Yang-Chan 05 July 2005 (has links)
This paper is concerned with the problem of constructing
A-optimal design for polynomial regression with analytic weight
function on the interval [m-a,m+a]. It is
shown that the structure of the optimal design depends on a and
weight function only, as a close to 0. Moreover, if the weight
function is an analytic function a, then a scaled version of
optimal support points and weights is analytic functions of a at
$a=0$. We make use of a Taylor expansion which coefficients can be
determined recursively, for calculating the A-optimal designs.
|
10 |
Ds-optimal designs for weighted polynomial regressionMao, Chiang-Yuan 21 June 2007 (has links)
This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree polynomial regression with analytic weight function
on the interval [m-a,m+a],m,a in R. It is demonstrated that the structure of the optimal design depends on d, a and weight function only, as a close to 0. Moreover, the Taylor polynomials of the scaled versions of the optimal support points and weights can be computed via a recursive formula.
|
Page generated in 0.0372 seconds