Spelling suggestions: "subject:"[een] TENNESSEE EASTMAN PROCESS"" "subject:"[enn] TENNESSEE EASTMAN PROCESS""
1 |
Plant-wide Performance Monitoring and Controller PrioritizationPareek, Samidh Unknown Date
No description available.
|
2 |
Plant-wide Performance Monitoring and Controller PrioritizationPareek, Samidh 06 1900 (has links)
Plant-wide performance monitoring has generated a lot of interest in the control engineering community. The idea is to judge the performance of a plant as a whole rather than looking at performance of individual controllers. Data based methods are currently used to generate a variety of statistical performance indices to help us judge the performance of production units and control assets. However, so much information can often be overwhelming if it lacks precise information. Powerful computing and data storage capabilities have enabled industries to store huge amounts of data. Commercial performance monitoring softwares such as those available from many vendor companies such as Honeywell, Matrikon, ExperTune etc typically use this data to generate huge amounts of information. The problem of data overload has in this way turned into an information overload problem. This work focuses on developing methods that reconcile these various statistical measures of performance and generate useful diagnostic measures in order to optimize process performance of a unit/plant. These methods are also able to identify the relative importance of controllers in the way that they affect the performance of the unit/plant under consideration. / Process Control
|
3 |
[en] USE OF ARTIFICIAL NEURAL NETWORK MODELS FOR FAULT DETECTION AND DIAGNOSIS OF TENNESSEE EASTMAN PROCESS / [pt] USO DE MODELOS DE REDES NEURAIS ARTIFICIAIS PARA DETECÇÃO DE FALHAS NO PROCESSO TENNESSEE EASTMANDANIEL LERNER 18 March 2019 (has links)
[pt] A humanidade está vivenciando a Quarta Revolução Industrial, caracterizada pela implementação global da internet, utilização de inteligência artificial e automatização dos processos. Este último é de grande importância para indústria química, uma vez que seu desenvolvimento possibilitou um aumento significativo da quantidade de dados armazenados diariamente, o que gerou uma demanda para análise desses dados. Este enorme fluxo de informações tornou o sistema cada vez mais complexo com uma aleatoriedade de falhas no processo que se identificadas poderiam ajudar a melhorar o processo e evitar acidentes. Uma solução ainda pouco comum na indústria, porém com grande potencial para identificar estas falhas de processo com excelência, é a emergente inteligência artificial. Para lidar com esta questão, o presente trabalho realiza a detecção e identificação de falhas em processos industriais através da modelagem de redes neurais artificias. O banco de dados foi obtido através do uso do benchmark de processo Tennessee Eastman, implementado no Software Matlab 2017b, o qual foi projetado para simular uma planta química completa. A enorme quantidade de dados gerados pelo processo tornou possível a simulação em um contexto de Big Data. Para modelagem dos dados, foram tanto aplicadas redes neurais tradicionais feedforward, quanto redes recorrentes: Rede de Elman e Echo State Network. Os resultados apontaram que as redes feedforward e de Elman obtiveram melhores desempenhos analisados pelo coeficiente de determinação (R2). Assim, o primeiro modelo obteve melhor topologia com 37x60x70x1, algoritmo de treinamento trainlm, funções de ativação tansig para as duas camadas intermediárias e camada de saída ativada pela purelin com R2 de 88,69 por cento. O modelo da rede de Elman apresentou sua melhor topologia com 37x45x55x1, algoritmo de treinamento trainlm, funções de ativação tansig para as duas camadas intermediárias e camada de saída ativada pela função purelin com R2 de 83,63 por cento. Foi concluido que as redes analisadas podem ser usadas em controle preditivo de falhas em processos
industriais, podendo ser aplicadas em plantas químicas no futuro. / [en] Humanity is experiencing the 4th Industrial Revolution, characterized by the global implementation of the internet, use of artificial intelligence and automation of processes. The last one is of great importance for the chemical industry, since its development allowed a significant increase in the amount of data stored daily, which generated a demand for the analysis of this data. This enormous flow of information made the system more and more complex with a randomness of process faults that if identified could help improve the process and prevent accidents. A solution not yet common in industry, but with great potential to identify these process faults with excellence, is the emergent artificial intelligence. To deal with this issue, the present work performs fault detection and diagnosis in industrial processes through artificial neural networks modeling. The database was obtained using the benchmark of processes Tennessee Eastman, implemented in Matlab 2017b Software, which is designed to simulate a complete chemical plant. The huge amount of data generated by the process made it possible to simulate in a Big Data context. For data modeling, were applied both traditional feedforward neural networks as well as recurrent networks: Elman Network and Echo State Network. The results indicated that the feedforward and Elman networks obtained better performances analyzed by the determination coefficient (R2). Thus, the first model obtained the best topology with 37x60x70x1, trainlm as training algorithm, tansig as activation functions for the two intermediate layers and output layer activated by the purelin function with R2 of 88.69 percent. The Elman
network model presented its best topology with 37x45x55x1, trainlm as training algorithm, tansig as activation functions for the two intermediate layers and output layer activated by purelin function with R2 of 83.63 percent. It was concluded that the analyzed networks can be used in predictive control of fault in industrial processes and can be applied in chemical plants in the future.
|
4 |
[pt] ESTUDO DE TÉCNICAS DE APRENDIZADO POR REFORÇO APLICADAS AO CONTROLE DE PROCESSOS QUÍMICOS / [en] STUDY OF REINFORCEMENT LEARNING TECHNIQUES APPLIED TO THE CONTROL OF CHEMICAL PROCESSES30 December 2021 (has links)
[pt] A indústria 4.0 impulsionou o desenvolvimento de novas tecnologias
para atender as demandas atuais do mercado. Uma dessas novas tecnologias
foi a incorporação de técnicas de inteligência computacional no cotidiano
da indústria química. Neste âmbito, este trabalho avaliou o desempenho de
controladores baseados em aprendizado por reforço em processos químicos
industriais. A estratégia de controle interfere diretamente na segurança e
no custo do processo. Quanto melhor for o desempenho dessa estrategia,
menor será a produção de efluentes e o consumo de insumos e energia. Os
algoritmos de aprendizado por reforço apresentaram excelentes resultados
para o primeiro estudo de caso, o reator CSTR com a cinética de Van de
Vusse. Entretanto, para implementação destes algoritmos na planta química
do Tennessee Eastman Process mostrou-se que mais estudos são necessários.
A fraca ou inexistente propriedade Markov, a alta dimensionalidade e as
peculiaridades da planta foram fatores dificultadores para os controladores
desenvolvidos obterem resultados satisfatórios. Foram avaliados para o estudo
de caso 1, os algoritmos Q-Learning, Actor Critic TD, DQL, DDPG, SAC e
TD3, e para o estudo de caso 2 foram avaliados os algoritmos CMA-ES, TRPO,
PPO, DDPG, SAC e TD3. / [en] Industry 4.0 boosted the development of new technologies to meet
current market demands. One of these new technologies was the incorporation
of computational intelligence techniques into the daily life of the chemical
industry. In this context, this present work evaluated the performance of
controllers based on reinforcement learning in industrial chemical processes.
The control strategy directly affects the safety and cost of the process. The
better the performance of this strategy, the lower will be the production of
effluents and the consumption of input and energy. The reinforcement learning
algorithms showed excellent results for the first case study, the Van de Vusse s
reactor. However, to implement these algorithms in the Tennessee Eastman
Process chemical plant it was shown that more studies are needed. The weak
Markov property, the high dimensionality and peculiarities of the plant were
factors that made it difficult for the developed controllers to obtain satisfactory
results. For case study 1, the algorithms Q-Learning, Actor Critic TD, DQL,
DDPG, SAC and TD3 were evaluated, and for case study 2 the algorithms
CMA-ES, TRPO, PPO, DDPG, SAC and TD3 were evaluated.
|
Page generated in 0.0363 seconds