• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] APRENDIZADO POR REFORÇO PROFUNDO PARA CONTROLE DE TRAJETÓRIA DE UM QUADROTOR EM AMBIENTES VIRTUAIS / [en] DEEP REINFORCEMENT LEARNING FOR QUADROTOR TRAJECTORY CONTROL IN VIRTUAL ENVIRONMENTS

GUILHERME SIQUEIRA EDUARDO 12 August 2021 (has links)
[pt] Com recentes avanços em poder computacional, o uso de novos modelos de controle complexos se tornou viável para realizar o controle de quadrotores. Um destes métodos é o aprendizado por reforço profundo (do inglês, Deep Reinforcement Learning, DRL), que pode produzir uma política de controle que atende melhor as não-linearidades presentes no modelo do quadrotor que um método de controle tradicional. Umas das não-linearidades importantes presentes em veículos aéreos transportadores de carga são as propriedades variantes no tempo, como tamanho e massa, causadas pela adição e remoção de carga. A abordagem geral e domínio-agnóstica de um controlador por DRL também o permite lidar com navegação visual, na qual a estimação de dados de posição é incerta. Neste trabalho, aplicamos um algorítmo de Soft Actor- Critic com o objeivo de projetar controladores para um quadrotor a fim de realizar tarefas que reproduzem os desafios citados em um ambiente virtual. Primeiramente, desenvolvemos dois controladores de condução por waypoint: um controlador de baixo nível que atua diretamente em comandos para o motor e um controlador de alto nível que interage em cascata com um controlador de velocidade PID. Os controladores são então avaliados quanto à tarefa proposta de coleta e alijamento de carga, que, dessa forma, introduz uma variável variante no tempo. Os controladores concebidos são capazes de superar o controlador clássico de posição PID com ganhos otimizados no curso proposto, enquanto permanece agnóstico em relação a um conjunto de parâmetros de simulação. Finalmente, aplicamos o mesmo algorítmo de DRL para desenvolver um controlador que se utiliza de dados visuais para completar um curso de corrida em uma simulação. Com este controlador, o quadrotor é capaz de localizar portões utilizando uma câmera RGB-D e encontrar uma trajetória que o conduz a atravessar o máximo possível de portões presentes no percurso. / [en] With recent advances in computational power, the use of novel, complex control models has become viable for controlling quadrotors. One such method is Deep Reinforcement Learning (DRL), which can devise a control policy that better addresses non-linearities in the quadrotor model than traditional control methods. An important non-linearity present in payload carrying air vehicles are the inherent time-varying properties, such as size and mass, caused by the addition and removal of cargo. The general, domain-agnostic approach of the DRL controller also allows it to handle visual navigation, in which position estimation data is unreliable. In this work, we employ a Soft Actor-Critic algorithm to design controllers for a quadrotor to carry out tasks reproducing the mentioned challenges in a virtual environment. First, we develop two waypoint guidance controllers: a low-level controller that acts directly on motor commands and a high-level controller that interacts in cascade with a velocity PID controller. The controllers are then evaluated on the proposed payload pickup and drop task, thereby introducing a timevarying variable. The controllers conceived are able to outperform a traditional positional PID controller with optimized gains in the proposed course, while remaining agnostic to a set of simulation parameters. Finally, we employ the same DRL algorithm to develop a controller that can leverage visual data to complete a racing course in simulation. With this controller, the quadrotor is able to localize gates using an RGB-D camera and devise a trajectory that drives it to traverse as many gates in the racing course as possible.
2

[en] ENABLING AUTONOMOUS DATA ANNOTATION: A HUMAN-IN-THE-LOOP REINFORCEMENT LEARNING APPROACH / [pt] HABILITANDO ANOTAÇÕES DE DADOS AUTÔNOMOS: UMA ABORDAGEM DE APRENDIZADO POR REFORÇO COM HUMANO NO LOOP

LEONARDO CARDIA DA CRUZ 10 November 2022 (has links)
[pt] As técnicas de aprendizado profundo têm mostrado contribuições significativas em vários campos, incluindo a análise de imagens. A grande maioria dos trabalhos em visão computacional concentra-se em propor e aplicar novos modelos e algoritmos de aprendizado de máquina. Para tarefas de aprendizado supervisionado, o desempenho dessas técnicas depende de uma grande quantidade de dados de treinamento, bem como de dados rotulados. No entanto, a rotulagem é um processo caro e demorado. Uma recente área de exploração são as reduções dos esforços na preparação de dados, deixando-os sem inconsistências, ruídos, para que os modelos atuais possam obter um maior desempenho. Esse novo campo de estudo é chamado de Data-Centric IA. Apresentamos uma nova abordagem baseada em Deep Reinforcement Learning (DRL), cujo trabalho é voltado para a preparação de um conjunto de dados em problemas de detecção de objetos, onde as anotações de caixas delimitadoras são feitas de modo autônomo e econômico. Nossa abordagem consiste na criação de uma metodologia para treinamento de um agente virtual a fim de rotular automaticamente os dados, a partir do auxílio humano como professor desse agente. Implementamos o algoritmo Deep Q-Network para criar o agente virtual e desenvolvemos uma abordagem de aconselhamento para facilitar a comunicação do humano professor com o agente virtual estudante. Para completar nossa implementação, utilizamos o método de aprendizado ativo para selecionar casos onde o agente possui uma maior incerteza, necessitando da intervenção humana no processo de anotação durante o treinamento. Nossa abordagem foi avaliada e comparada com outros métodos de aprendizado por reforço e interação humano-computador, em diversos conjuntos de dados, onde o agente virtual precisou criar novas anotações na forma de caixas delimitadoras. Os resultados mostram que o emprego da nossa metodologia impacta positivamente para obtenção de novas anotações a partir de um conjunto de dados com rótulos escassos, superando métodos existentes. Desse modo, apresentamos a contribuição no campo de Data-Centric IA, com o desenvolvimento de uma metodologia de ensino para criação de uma abordagem autônoma com aconselhamento humano para criar anotações econômicas a partir de anotações escassas. / [en] Deep learning techniques have shown significant contributions in various fields, including image analysis. The vast majority of work in computer vision focuses on proposing and applying new machine learning models and algorithms. For supervised learning tasks, the performance of these techniques depends on a large amount of training data and labeled data. However, labeling is an expensive and time-consuming process. A recent area of exploration is the reduction of efforts in data preparation, leaving it without inconsistencies and noise so that current models can obtain greater performance. This new field of study is called Data-Centric AI. We present a new approach based on Deep Reinforcement Learning (DRL), whose work is focused on preparing a dataset, in object detection problems where the bounding box annotations are done autonomously and economically. Our approach consists of creating a methodology for training a virtual agent in order to automatically label the data, using human assistance as a teacher of this agent. We implemented the Deep Q-Network algorithm to create the virtual agent and developed a counseling approach to facilitate the communication of the human teacher with the virtual agent student. We used the active learning method to select cases where the agent has more significant uncertainty, requiring human intervention in the annotation process during training to complete our implementation. Our approach was evaluated and compared with other reinforcement learning methods and human-computer interaction in different datasets, where the virtual agent had to create new annotations in the form of bounding boxes. The results show that the use of our methodology has a positive impact on obtaining new annotations from a dataset with scarce labels, surpassing existing methods. In this way, we present the contribution in the field of Data-Centric AI, with the development of a teaching methodology to create an autonomous approach with human advice to create economic annotations from scarce annotations.
3

[en] A FRAMEWORK FOR AUTOMATED VISUAL INSPECTION OF UNDERWATER PIPELINES / [pt] UM FRAMEWORK PARA INSPEÇÃO VISUAL AUTOMATIZADA DE DUTOS SUBAQUÁTICOS

EVELYN CONCEICAO SANTOS BATISTA 30 January 2024 (has links)
[pt] Em ambientes aquáticos, o uso tradicional de mergulhadores ou veiculos subaquáticos tripulados foi substituído por veículos subaquáticos não tripulados (como ROVs ou AUVs). Com vantagens em termos de redução de riscos de segurança, como exposição à pressão, temperatura ou falta de ar. Além disso, conseguem acessar áreas de extrema profundidade que até então não eram possiveis para o ser humano. Esses veiculos não tripulados são amplamente utilizados para inspeções como as necessárias para o descomissionamento de plataformas de petróleo Neste tipo de fiscalização é necessário analisar as condições do solo, da tu- bulação e, principalmente, se foi criado um ecossistema próximo à tubulação. Grande parte dos trabalhos realizados para a automação desses veículos utilizam diferentes tipos de sensores e GPS para realizar a percepção do ambiente. Devido à complexidade do ambiente de navegação, diferentes algoritmos de controle e automação têm sido testados nesta área, O interesse deste trabalho é fazer com que o autômato tome decisões através da análise de eventos visuais. Este método de pesquisa traz a vantagem de redução de custos para o projeto, visto que as câmeras possuem um preço inferior em relação aos sensores ou dispositivos GPS. A tarefa de inspeção autônoma tem vários desafios: detectar os eventos, processar as imagens e tomar a decisão de alterar a rota em tempo real. É uma tarefa altamente complexa e precisa de vários algoritmos trabalhando juntos para ter um bom desempenho. A inteligência artificial apresenta diversos algoritmos para automatizar, como os baseados em aprendizagem por reforço entre outros na área de detecção e classificação de imagens Esta tese de doutorado consiste em um estudo para criação de um sistema avançado de inspeção autônoma. Este sistema é capaz de realizar inspeções apenas analisando imagens da câmera AUV, usando aprendizagem de reforço profundo profundo para otimizar o planejamento do ponto de vista e técnicas de detecção de novidades. Contudo, este quadro pode ser adaptado a muitas outras tarefas de inspecção. Neste estudo foram utilizados ambientes realistas complexos, nos quais o agente tem o desafio de chegar da melhor forma possível ao objeto de interesse para que possa classificar o objeto. Vale ressaltar, entretanto, que os ambientes de simulação utilizados neste contexto apresentam certo grau de simplicidade carecendo de recursos como correntes marítimas on dinâmica de colisão em seus cenários simulados Ao final deste projeto, o Visual Inspection of Pipelines (VIP) framework foi desenvolvido e testado, apresentando excelentes resultados e ilustrando a viabilidade de redução do tempo de inspeção através da otimização do planejamento do ponto de vista. Esse tipo de abordagem, além de agregar conhecimento ao robô autônomo, faz com que as inspeções subaquáticas exijam pouca presença de ser humano (human-in-the-loop), justificando o uso das técnicas empregadas. / [en] In aquatic environments, the traditional use of divers or manned underwater vehicles has been replaced by unmanned underwater vehicles (such as ROVs or AUVs). With advantages in terms of reducing safety risks, such as exposure to pressure, temperature or shortness of breath. In addition, they are able to access areas of extreme depth that were not possible for humans until then. These unmanned vehicles are widely used for inspections, such as those required for the decommissioning of oil platforms. In this type of inspection, it is necessary to analyze the conditions of the soil, the pipeline and, especially, if an ecosystem was created close to the pipeline. Most of the works carried out for the automation of these vehicles use different types of sensors and GPS to perform the perception of the environment. Due to the complexity of the navigation environment, different control and automation algorithms have been tested in this area. The interest of this work is to make the automaton take decisions through the analysis of visual events. This research method provides the advantage of cost reduction for the project, given that cameras have a lower price compared to sensors or GPS devices. The autonomous inspection task has several challenges: detecting the events, processing the images and making the decision to change the route in real time. It is a highly complex task and needs multiple algorithms working together to perform well. Artificial intelligence presents many algorithms to automate, such as those based on reinforcement learning, among others in the area of image detection and classification. This doctoral thesis consists of a study to create an advanced autonomous inspection system. This system is capable of performing inspections only by analyzing images from the AUV camera, using deep reinforcement learning, and novelty detection techniques. However, this framework can be adapted to many other inspection tasks. In this study, complex realistic environments were used, in which the agent has the challenge of reaching the object of interest in the best possible way so that it can classify the object. It is noteworthy, however, that the simulation environments utilized in this context exhibit a certain degree of simplicity, lacking features like marine currents or collision dynamics in their simulated scenarios. At the conclusion of this project, a Visual Inspection of Pipelines (VIP) framework was developed and tested, showcasing excellent results and illustrating the feasibility of reducing inspection time through the optimization of viewpoint planning. This type of approach, in addition to adding knowledge to the autonomous robot, means that underwater inspections require little pres- ence of a human being (human-in-the-loop), justifying the use of the techniques employed.
4

[en] A SIMULATION STUDY OF TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING FOR ROBOTICS / [pt] UM ESTUDO DE TRANSFER LEARNING EM DEEP REINFORCEMENT LEARNING EM AMBIENTES ROBÓTICOS SIMULADOS

EVELYN CONCEICAO SANTOS BATISTA 05 August 2020 (has links)
[pt] Esta dissertação de mestrado consiste em um estudo avançado sobre aprendizado profundo por reforço visual para robôs autônomos através de técnicas de transferência de aprendizado. Os ambientes de simulação testados neste estudo são ambientes realistas complexos onde o robô tinha como desafio aprender e transferir conhecimento em diferentes contextos para aproveitar a experiência de ambientes anteriores em ambientes futuros. Este tipo de abordagem, além de agregar conhecimento ao robô autônomo, diminui o número de épocas de treinamento do algoritmo, mesmo em ambientes complexos, justificando o uso de técnicas de transferência de aprendizado. / [en] This master s thesis consists of an advanced study on deep learning by visual reinforcement for autonomous robots through transfer learning techniques. The simulation environments tested in this study are highly realistic environments where the challenge of the robot was to learn and tranfer knowledge in different contexts to take advantage of the experiencia of previous environments in future environments. This type of approach besides adding knowledge to the autonomous robot reduces the number of training epochs the algorithm, even in complex environments, justifying the use of transfer learning techniques.
5

[pt] ESTUDO DE TÉCNICAS DE APRENDIZADO POR REFORÇO APLICADAS AO CONTROLE DE PROCESSOS QUÍMICOS / [en] STUDY OF REINFORCEMENT LEARNING TECHNIQUES APPLIED TO THE CONTROL OF CHEMICAL PROCESSES

30 December 2021 (has links)
[pt] A indústria 4.0 impulsionou o desenvolvimento de novas tecnologias para atender as demandas atuais do mercado. Uma dessas novas tecnologias foi a incorporação de técnicas de inteligência computacional no cotidiano da indústria química. Neste âmbito, este trabalho avaliou o desempenho de controladores baseados em aprendizado por reforço em processos químicos industriais. A estratégia de controle interfere diretamente na segurança e no custo do processo. Quanto melhor for o desempenho dessa estrategia, menor será a produção de efluentes e o consumo de insumos e energia. Os algoritmos de aprendizado por reforço apresentaram excelentes resultados para o primeiro estudo de caso, o reator CSTR com a cinética de Van de Vusse. Entretanto, para implementação destes algoritmos na planta química do Tennessee Eastman Process mostrou-se que mais estudos são necessários. A fraca ou inexistente propriedade Markov, a alta dimensionalidade e as peculiaridades da planta foram fatores dificultadores para os controladores desenvolvidos obterem resultados satisfatórios. Foram avaliados para o estudo de caso 1, os algoritmos Q-Learning, Actor Critic TD, DQL, DDPG, SAC e TD3, e para o estudo de caso 2 foram avaliados os algoritmos CMA-ES, TRPO, PPO, DDPG, SAC e TD3. / [en] Industry 4.0 boosted the development of new technologies to meet current market demands. One of these new technologies was the incorporation of computational intelligence techniques into the daily life of the chemical industry. In this context, this present work evaluated the performance of controllers based on reinforcement learning in industrial chemical processes. The control strategy directly affects the safety and cost of the process. The better the performance of this strategy, the lower will be the production of effluents and the consumption of input and energy. The reinforcement learning algorithms showed excellent results for the first case study, the Van de Vusse s reactor. However, to implement these algorithms in the Tennessee Eastman Process chemical plant it was shown that more studies are needed. The weak Markov property, the high dimensionality and peculiarities of the plant were factors that made it difficult for the developed controllers to obtain satisfactory results. For case study 1, the algorithms Q-Learning, Actor Critic TD, DQL, DDPG, SAC and TD3 were evaluated, and for case study 2 the algorithms CMA-ES, TRPO, PPO, DDPG, SAC and TD3 were evaluated.

Page generated in 0.0541 seconds