• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 542
  • 331
  • 246
  • 92
  • 74
  • 22
  • 18
  • 18
  • 15
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1646
  • 322
  • 283
  • 205
  • 179
  • 170
  • 152
  • 136
  • 134
  • 124
  • 122
  • 94
  • 88
  • 85
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Austenite stainless in High energy welding and Arc welding produce texture revolution and mechanical property analysis

Chen, Kun-Yu 12 September 2001 (has links)
The austenite stainless in high energy welding and tradition welding (TIG) produce different texture revolution and mechanicl property are main research. From EBSD analysis,austenite stainless in EBW,make more random texture to TIG welding,and main texture in TIG welding are cubic texture {100}<001> and copper texture {110}<1-1 2>.From EBW,there are some different texture in up fusion zone and down fusion zone .Experience of impact and hardness ,which find out copper and brass texture have more mechanical property for low-temperature, £_ ferrite content in center welding fusion and boundary fusion zone have different percent, then that can explain how differnt hardness value in center and fusion boundary about mechanical property.
132

The effect of enzymes and hydrocolloids on the texture of tortillas from fresh nixtamalized masa and nixtamalized corn flour

Gutierrez de Velasco, Arturo Carlos 30 September 2004 (has links)
The texture of tortillas was improved by the addition of maltogenic amylase and carboxymethylcellulose (CMC) and guar gum to fresh masa from ground nixtamal (FNM) and nixtamalized corn flour (NCF) masa. Differences in the performance of additives in tortillas held under refrigeration or ambient storage were documented. For NCF tortillas, significant improvements were obtained in objective and subjective texture measurements by two treatments. Tortilla texture was improved by a treatment with a high enzyme level (170 mg/kg of maltogenic α-amylase, 0.14% CMC, 0.85% guar) as measured by objective tests and by a treatment with low enzyme level (60 mg/kg of maltogenic α-amylase, 0.43% CMC, 0.57% guar) as measured by subjective tests. The addition of maltogenic α-amylase (70 mg/kg) and CMC (0.35%) to FNM tortillas at levels similar to the low enzyme NCF treatment but with lower guar level (0.12%) improved tortilla texture. The maltogenic α-amylase softened tortillas by trimming the starch structure. This allowed the guar to interfere with amylopectin re-crystallization inside gelatinized starch granules. The CMC created a more flexible intergranular matrix that helped maintain the disrupted tortilla structure. Guar was ineffective in refrigerated tortillas, whereas, maltodextrins effectively improved refrigerated tortillas. The sequence of partial starch hydrolysis, warm holding condition, and time for guar to associate with starch and CMC was necessary to improve tortilla texture. Thus, different additives may be required for cold versus room temperature storage. Sugars increased in enzyme-treated tortillas during storage. This suggests that maltogenic α-amylase was only partially inactivated during baking of corn tortillas. Tortillas with more enzyme had lower and later pasting viscosity as measured by a Rapid Viscoanalyzer. Tortillas prepared from FNM also had lower and later pasting viscosity compared to NCF tortillas. Pasting viscosity of tortillas revealed intrinsic starch polymer characteristics and interactions. Results of this study provide commercially applicable information about desired levels for the extent of starch hydrolysis, the type and amount of gums and starches, and product microstructure to delay staling of corn tortillas.
133

The effect of strain and path change on the mechanical properties and microstructural evolution of ultrafine grained interstitial free steel during equal channel angular extrusion (ECAE)

Sutter, Steven George 25 April 2007 (has links)
The objectives of this study were to examine the effect of strain and path change on the microstructural evolution of ultrafine grained interstitial free (IF) steel during equal channel angular extrusion (ECAE); to determine the mechanical properties; to observe the resulting texture; and to perform optical and electron microscopy of the resulting material. The effects of different routes of extrusion (A, B, C, C' and E), heat treatment and plastic strains from 1.15 to 18.4 were examined. Monotonous tensile testing was used to determine mechanical behavior of processed materials. X-ray diffraction and TEM analyses were performed to evaluate the effect of processing on texture and grain morphology. Hardness measurements were performed to determine recrystallization behavior of the processed material. Optical microscopy was conducted on heat treated samples to determine their grain size and refinement. Monotonous tensile testing of processed materials showed that there was significant strengthening after the first extrusion. Further processing resulted in increasing values of yield strength and ultimate tensile strength, with ductility at failure varying depending upon which processing route was used. The best tensile strength results were obtained after processing Routes 8C' and 16E, due to the significant grain refinement these routes produced. X-ray diffraction revealed increases in strength of preferred texture along the directions [111] and [001], perpendicular to the transverse plane, for all specimens that were processed using ECAE. TEM observations showed a consistent refinement of grain size as the amount of processing increased, especially within Routes C' and E. Hardness measurements of heat treated specimens showed that the onset of recrystallization occurred at approximately the same temperature of recrystallization as that of pure iron, 450°C. The recrystallization curves for all samples showed that grain growth begins at a temperature of around 700°C. The low carbon content of IF steel made optical microscopy challenging. The grain size of annealed materials becomes finer and more uniform, ranging between 60 and 90 μm2, at high strain levels under Routes C' and E, due to the many potential nucleation sites developed in highly worked material.
134

Effect of downscaling copper interconnects on the microstructure revealed by high resolution tem orientation mapping

Kameswaran, Jai Ganesh, 1983- 06 February 2012 (has links)
The scaling required to accommodate faster chip performance in microelectronic devices has necessitated a reduction in the dimensions of copper interconnects at the back end of the line. The constant downscaling of copper interconnects has resulted in changes to the microstructure, and these variations are known to impact electrical resistivity and reliability issues in interconnects. In this work, a novel electron diffraction technique called Diffraction Scanning Transmission Electron Microscopy (D-STEM) has been developed and coupled with precession electron microscopy to obtain quantitative local texture information in damascene copper lines (1.8 \mu m to 70 nm in width) with a spatial resolution of less than 5 nm. Misorientation and trace analysis has been performed to investigate the the grain boundary distribution in these lines. The results reveal strong variations in texture and grain boundary distribution of the copper lines upon downscaling. 1.8 \mu m wide lines exhibit strong <111> normal texture and comprise large bamboo-type grains. Upon downscaling to 180 nm, a {111} <110> biaxial texture has been observed. In contrast, narrower lines of widths 120 nm and 70 nm reveal sidewall growth of {111} grains and a dominant <110> normal texture. The fraction of coherent twin boundaries also reduces with decreasing line width. The microstructure changes from bamboo-type in wider lines to one comprising clusters of small grains separated by high angle boundaries in the vicinity of large grains. The evolution of such a microstructure has been discussed in terms of overall energy minimization and dimensional constraints. Finite element analysis has been performed to correlate misorientations between grains and local thermal stresses associated with stress migration. Effect of variations in the copper interconnect microstructure on electromigration flux divergence has also been discussed. / text
135

Texture transition in aluminum

Stephens, Arthur William, 1936- January 1965 (has links)
No description available.
136

A novel approach to structure generation for texture improvement in a soymilk-dairy gel

Grygorczyk, Alexandra 06 September 2012 (has links)
The current study attempts to improve the texture properties of a fermented product containing soymilk and milk. Preferred Attribute Elicitation (PAE) was examined as a novel sensory methodology for extracting important attributes influencing consumer liking. This method was applied on commercial yogurt products, and it was determined that texture was important to consumer acceptance, and that texture attributes such as graininess and runny texture were detrimental to consumer liking. Outcomes of the PAE method were compared to those obtained from a conventional trained panel method. It was determined that the PAE method was able to characterize the product textures in a meaningful way, resulting in a product map that closely resembled that obtained by the trained panel method. A mixed protein network was then generated, and simultaneous gelation of both soy and dairy proteins lead to an improved gel structure as compared to gelation of either soy or dairy proteins alone in the mixed system. In addition, it was determined that the presence of homogenized fat globules in the network resulted in fermented products with increased mouthcoating and thickness, particularly when cream was homogenized with dairy milk, with or without soymilk in the mix. It was noted that the order of homogenization (cream with either soymilk, milk alone or with the mix) affected the size and number of aggregates as well as number of interconnecting strands. Additionally, aggregation of milk proteins before soy proteins generated gels with higher slipperiness and fattiness perceptions than gels made from simultaneous milk and soy protein aggregation. This study suggested that it is possible to generate desirable texture properties from a mixture of soy protein and milk proteins, and that it is of fundamental importance to fine tune the structure within the matrix to obtain optimal texture perception. / NSERC, Soybean Utilization Fund
137

Texture Evolution and Variant Selection in Zr-2.5Nb During the α-β Phase Transformation

MOSBRUCKER, PAULA L. 24 September 2010 (has links)
Zr-2.5Nb is used as the pressure tube material for 2nd and 3rd generation CANDU reactors. The physical properties of pressure tubes in service, including strength, dimensional stability, and delayed hydride cracking resistance, are largely dependent upon the crystallographic texture of the hcp α-phase, whose texture is predominantly developed during the extrusion stage of manufacturing. During extrusion and subsequent cooling, the formation of α may occur by transformation of the bcc β-phase to α according to the Burgers relationship and influenced by variant selection – that is, a preference for one or more of the twelve possible orientations of the hcp lattice relative to the bcc lattice. Variant selection has been observed in other Zr alloys, including the heat-treated zone in pressure tube welds and the bulk texture of heat-treated pressure tubes. Further, it has been proposed as a possible explanation for texture characteristics in pressure tubes that are not explained by the deformation mechanics of extrusion. However, the criteria for variant selection are unclear. In this work, an understanding of the criteria for variant selection is developed through observations of the differing mechanisms at play during both directions of transformation, from α-β and β-α. Transformation via the Burgers relationship was confirmed; the existence of variant selection is also established. In thermal cycles to the β-regime, this selection manifests as the selection of a new (0002) variant, as driven by anisotropic thermal stresses generated during heating. Upon cooling, the high-temperature β texture is inherited by the α grains via the Burgers relationship; the magnitude of the texture maxima is driven by elastic transformation strains. Further thermal cycles to the β regime demonstrate texture memory, with some development of cubic symmetry due to grain growth during the hold in the β-phase. No texture changes are observed if samples are not heated fully into the beta regime. Finally, a study of the biasing effects of both residual and external stresses is discussed. While the external stress did not appear to be capable of biasing variant selection during either heating or cooling, some texture changes were observed, likely due to deformation at high temperature. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2010-09-23 20:44:24.784
138

Training in acquisition of texture-cued fasting-anticipatory satiety in rats using high- or low-fat diets

White, Jennifer. January 1998 (has links)
Anticipatory satiety is the ability to reduce meal size when the diet at that meal is consistently followed by a short time interval to the next access to food. This prediction of intake is learnt, i.e. based on the association of a food's sensory characteristics with some consequence(s) of ingesting it. / Two pilot studies were conducted using male Sprague-Dawley rats in which (1) the ability of food texture to cue fasting duration was indicated by evidence of anticipatory satiety in the low-fat powder-long/paste-short group and in the high-fat paste-long/powder-short group and (2) the pattern of anticipatory satiety was seen only in the low-fat granules-long/powder-short group. / In the main experiment (n = 9), anticipatory satiety was reached twice in the highfat powder-long/pellet-short group on days 16--23 (p &le; 0.1) and once in the low-fat pellet-long group/powder-short on days 20--23 (p &le; 0.1). The acquisition of texture-cued fasting-anticipatory satiety seems to depend upon high-energy density of the diet and the utilisation of textures which make it easier for the rats to eat.
139

DYNAMIC MECHANICAL BEHAVIOR OF MAGNESIUM ALLOYS UNDER SHOCK LOADING CONDITION

2015 June 1900 (has links)
The use of magnesium and its alloys, as the lightest structural materials, to decrease the weight, improve the fuel efficiency and reduce the greenhouse gas emissions has significantly increased in the automotive and aerospace industries in recent years. However, magnesium alloys are commonly used as die casting products. The current application of wrought magnesium alloy products is limited because of their poor ductility at room temperature due to the formation of a strong texture and restricted active deformation modes in wrought magnesium products. Moreover, to support the application of magnesium alloys in automobile and airplane components, their dynamic mechanical response must be determined to evaluate their behavior during impact events such as car crash and bird strike in airplanes. Therefore, in this research study, the dynamic mechanical behavior of magnesium alloys at high strain rates was investigated. The effects of initial texture, composition, strain rate and grain size on the deformation mechanism were also determined. Split Hopkinson Pressure Bar was used to investigate the dynamic mechanical behavior of the magnesium alloys. Texture analysis on the alloy prior and after shock loading was done using X-ray diffraction. Scanning electron microscopy was used to study the microstructural evolution in the alloys before and after shock loading. Chemical analysis and phase identification were done by energy dispersive spectroscopy and X-ray diffraction analysis, respectively. Additionally, twinning type and distribution was determined by means of orientation imaging microscopy whereas dislocation types and distribution was determined using transmission electron microscopy. A visco-plastic self-consistent simulation was used to corroborate the experimental textures and possible deformation mechanisms. The dynamic mechanical behavior of cast AZ and AE magnesium alloys with different chemistries was investigated at strain rates ranging between 800 to 1400 s-1 to determine the effects of composition on the response of the alloys to shock loading. It was found that an increase in the aluminum content of the AZ alloys increased the volume fraction of β-Mg17Al12 and Al4Mn phases, strength and strain hardening but, on the other hand, decreased the ductility and twinning fraction, particularly extension twinning fraction, for all the investigated strain rates. In addition, increasing the strain rate resulted in considerable increase in strength of the alloys. Texture measurements showed that shock loading of the AE alloys resulted in development of a stronger (00.2) basal texture in samples with higher content of yttrium at the investigated strain rates. Increasing the yttrium content of the cast AE alloys decreased twinning fraction but increased dislocation density and volume fraction of the Al2Y second phase. As a result, the tensile strength and ductility of the alloys increased which is an interesting result for high-strain rate applications of AE alloys in comparison to AZ alloys. The dynamic mechanical behavior of rolled AZ31B and WE43 magnesium alloys were also studied at strain rates ranging between 600 to 1400 s-1. A strong (00.2) basal texture was observed in all shock loaded AZ31B samples. It was also observed that increasing the strain rate led to an increase in strength and ductility, but to a decrease in twinning fraction. A high degree of mechanical anisotropy was found for all investigated strain rates so that the lowest strength was registered for the samples cut along the direction parallel to the rolling direction. Furthermore, it was found that at high strain rates, fine-grained AZ31B alloy exhibits better ductility and strength compared to coarse-grained alloy. However, the hardening rate of coarse-grained alloy was higher. In the case of rolled WE43 alloy, it was found that the strength and ductility increased and twinning fraction decreased with increase in strain rate. Furthermore, another effect of increase in strain rate was the higher activation of pyramidal <c+a> slip systems. In addition, degree of stress and strain anisotropy is low particularly at higher strain rates, which is mainly related to the weak initial texture of the samples due to the presence of rare earth elements. Furthermore, strength and ductility were found to decrease with increasing grain size, while twinning fraction, activity of double and contraction twins and strain hardening rate increase with increasing grain size. In both AZ31B and WE43 alloy, the presence of <c+a> dislocations was confirmed at high strain rates using ‘g.b’ analysis confirming activation of pyramidal <c+a> slip systems during dynamic shock loading.
140

Use of Soybean (Glycine max (L.) Merrill) Presscake and Flours as Food Ingredients: Effect on Nutritional, Physical, Textural, Sensory Properties, Starch Digestibility and Glycemic Index

Wu, Mingjue 18 December 2014 (has links)
Corn-based tortillas and wheat-based pizza crust were formulated using soybean presscake (SP) and defatted soy flour (SF); changes in nutritional properties, selected anti-nutritional factors, physical characteristics and consumer acceptance were evaluated as were in vitro and in vivo evaluation of glycemic index (GI) for tortillas at selected SP fortification levels. Protein quality and quantity improved by adding soy products. Fat levels increased with SP but decreased with SF. While levels of trypsin inhibitor and phytic acid generally increased, levels were considered acceptable. Texture of SP tortillas was more like the corn control than SF tortillas, likely because of higher fat content in SP. Flavour, texture and overall consumer acceptability were higher for tortillas containing soy products. In vitro analysis showed lower starch hydrolysis for the soybean tortillas, but in vivo GI values were not significantly different. Thus, incorporation of SP and defatted SF to fortify bakery products has potential.

Page generated in 0.0651 seconds