• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 30
  • 30
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micromachined Broadband Acoustic Transducers with Integrated Optical Displacement Detection

Hall, Neal Allen 19 November 2004 (has links)
Micromachined microphones with diffraction-based optical displacement detection are presented. A compliant membrane is made part of a phase sensitive diffraction grating, and the deflection resulting from external acoustic pressure alters the intensities of the diffracted orders which are monitored with integrated photodiodes. The scheme provides the displacement sensitivity of a Michelson interferometer and can be integrated without beam splitters or critical alignment problems into volumes on the order of 1mm³. The method is implemented and characterized using microphone membranes with integrated diffraction grating back electrodes fabricated on silicon using Sandia National Laboratories' dedicated processing platform. Detailed response characterization in both air and vacuum environments is performed to extract the diaphragm properties and high frequency cutoff frequencies of the microphone. Results from a finite element model of the microphone structure are in good agreement with measured data. The sensor's internal noise is characterized with measurements performed in the anechoic acoustic test facility at Georgia Tech. While utilizing 2.4mW of laser power, an (A) weighted displacement resolution of 6×10⁻⁴Å/√Hz is measured which is limited by thermal acoustic noise caused by the microphone's back-plate flow resistance.
2

Detection of burst noise using the chi-squared goodness of fit test

Marwaha, Shubra 2009 August 1900 (has links)
Statistically more test samples obtained from a single chip would give a better picture of the various noise processes present. Increasing the number of samples while testing one chip would however lead to an increase in the testing time, decreasing the overall throughput. The aim of this report is to investigate the detection of non-Gaussian noise (burst noise) in a random set of data with a small number of samples. In order to determine whether a given set of noise samples has non-Gaussian noise processes present, a Chi-Squared ‘Goodness of Fit’ test on a modeled set of random data is presented. A discussion of test methodologies using a single test measurement pass as well as two passes is presented from the obtained simulation results. / text
3

Stagioni: Temperature management to enable near-sensor processing for performance, fidelity, and energy-efficiency of vision and imaging workloads

January 2019 (has links)
abstract: Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs of near-sensor processing -- to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand. Based on the characterization, the work proposes and investigate two thermal management strategies -- stop-capture-go and seasonal migration -- for imaging-aware thermal management. The work present parameters that govern the policy decisions and explore the trade-offs between system power and policy overhead. The work's evaluation shows that the novel dynamic thermal management strategies can unlock the energy-efficiency potential of near-sensor processing with minimal performance impact, without compromising image fidelity. / Dissertation/Thesis / Masters Thesis Computer Engineering 2019
4

Modeling and Parameter Estimation of Sea Clutter Intensity in Thermal Noise

January 2019 (has links)
abstract: A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two separate structures of the sea clutter intensity fluctuations. The first structure is the texture that is associated with long sea waves and exhibits long temporal decorrelation period. The second structure is the speckle that accounts for reflections from multiple scatters and exhibits a short temporal decorrelation period from pulse to pulse. Existing methods for estimating the CKD model parameters do not include the thermal noise power, which is critical for real sea clutter processing. Estimation methods that include the noise power are either computationally intensive or require very large data records. This work proposes two new approaches for accurately estimating all three CKD model parameters, including noise power. The first method integrates, in an iterative fashion, the noise power estimation, using one-dimensional nonlinear curve fitting, with the estimation of the shape and scale parameters, using closed-form solutions in terms of the CKD intensity moments. The second method is similar to the first except it replaces integer-based intensity moments with fractional moments which have been shown to achieve more accurate estimates of the shape parameter. These new methods can be implemented in real time without requiring large data records. They can also achieve accurate estimation performance as demonstrated with simulated and real sea clutter observation datasets. The work also investigates the numerically computed Cram\'er-Rao lower bound (CRLB) of the variance of the shape parameter estimate using intensity observations in thermal noise with unknown power. Using the CRLB, the asymptotic estimation performance behavior of the new estimators is studied and compared to that of other estimators. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
5

Rise Over Thermal Estimation Algorithm Optimization and Implementation / Rise Over Thermal Estimation Algorithm Optimization and Implementation

Irshad, Saba, Nepal, Purna Chandra January 2013 (has links)
The uplink load for the scheduling of Enhanced-Uplink (E-UL) channels determine the achievable data rate for Wideband Code Division Multiple Access (WCDMA) systems, therefore its accurate measurement carries a prime significance. The uplink load also known as Rise-over-Thermal (RoT), which is the quotient of the Received Total Wideband Power (RTWP) and the Thermal Noise Power floor. It is a major parameter which is calculated at each Transmission Time Interval (TTI) for maintaining cell coverage and stability. The RoT algorithm for evaluation of uplink load is considered as a complex and resource demanding among several Radio Resource Management (RRM) algorithms running in a radio system. The main focus of this thesis is to study RoT algorithm presently deployed in radio units and its possible optimization by reducing complexity of the algorithm in terms of memory usage and processing power. The calculation of RoT comprises three main blocks a Kalman filter, a noise floor estimator and the RoT computation. After analyzing the complexity of each block it has been established that the noise floor estimator block is consuming most of the processing power producing peak processor load since it involves many complex floating point calculations. However, the other blocks do not affect the processing load significantly. It was also observed that some block updates can be reduced in order to decrease the average load on the processor. Three techniques are proposed for reducing the complexity of the RoT algorithm, two for the reduction of peak load and one for the reduction of average load. For reducing the peak load, an interpolation approach is used instead of performing transcendental mathematical calculations. Also, the calculations involving noise floor estimation are extended over several TTIs by keeping in view that the estimation is not time critical. For the reduction of average load, the update rate for the Kalman Filter block is reduced. Based on these optimization steps, a modified algorithm for RoT computation with reduced complexity is proposed. The proposed changes are tested by means of MATLAB simulations demonstrating the improved performance with consistency in the output results. Finally, an arithmetic operation count is done using the hardware manual of Power PC (PPC405) used in Platform 4, which gives a rough estimate of decrease in the percentage of calculations after optimization. / saabairshad@gmail.com
6

Measuring the nonconservative force field in an optical trap and imaging biopolymer networks with Brownian motion

Thrasher, Pinyu Wu 08 July 2013 (has links)
Optical tweezers have been widely used by biophysicists to measure forces in single molecular processes, such as the force of a motor molecule walking and the force of a DNA molecule winding and unwinding. In these and similar force measurements, the usual assumption is that the force applied to a particle inside the tweezers is proportional to the displacement of the particle away from the trap center like Hookean springs, which would imply that the force field is conservative. However, the Gaussian beam model has indicated that the force field generated by optical tweezers is actually nonconservative, yet no experiments have measured or accounted for this effect. We introduce an experimental method -- the local drift method -- that can measure the force field in optical tweezers with high precision without any assumptions about the functional form of the force field. The force field is determined by analyzing the Brownian motion of a trapped particle. We successfully applied this method to different sizes of particles and measured the three dimensional force field with 10 nm spatial resolution and femtonewton precision in force. We find that the force field is indeed nonconservative. The nonconservative contribution increases radially away from the optical axis for both small and large particles. The curl vector field -- a measurement of the nonconservative force field -- reverses direction from counter-clockwise for small particles in the Rayleigh regime to clockwise for large particles in the ray optics regime, consistent with the different scattering force profiles in the two distinct scattering regimes. Together with the thermal fluctuations of the trapped particle, the nonconservative force can cause a complex flux of energy into the system. Optically-confined Brownian motion is further used to probe nanostructures such as a biopolymer network. This technique -- thermal noise imaging -- uses a Brownian particle as a "natural scanner" to explore a biopolymer network by moving the Brownian particle through the network with optical tweezers. The position fluctuations of the probe particle reflect the location of individual filaments as excluded volumes. The resolution of thermal noise imaging is directly coupled to the size of the probe particle. A smaller probe is capable of exploring smaller pore sizes formed by dense network. Previously, a 200 nm polystyrene particle had been used to probe an agar network. In this work, 100 nm gold probe particles are used to enhance the resolution. A 100 nm particle explore a network with mesh 2³ times smaller and therefore enhance the network resolution by 2³ times. A 100 nm particle also improves the imaging speed by a factor of 2 because of its faster diffusion. Three-dimensional thermal noise images of agarose filaments are obtained and a resolution of 10 nm for the position of the filaments is achieved. In addition, a gold particle is trapped with significantly less power than a polystyrene particle of the same size, indicating the possibility for using even smaller gold particles to further improve the resolution. / text
7

Noise sources in the electric field antenna on the ESA JUICE satellite

Odelstad, Elias January 2013 (has links)
The noise in the Langmuir Probe and Plasma Wave Instrument (LP-PWI) on board ESA:s future Jupiter satellite JUICE (Jupiter ICy Moons Explorer) was investigated. Thermal Johnson-Nyquist noise and shot noise, caused by fluctuations in the probe-plasma currents, were combined with the quasi-thermal noise (QTN) due to thermal fluctuations in the electric field in the plasma, using a small signal equivalent circuit model. The contributions and effects of each of the considered noise sources were examined and compared for a number of representative space plasma conditions, including the cold dense plasma of Ganymede's ionosphere and the hot tenuous plasma out in the Jovian magnetosphere. The results showed that in the cold dense plasma of Ganymede's ionosphere, the antenna was long compared to the Debye length and the quasi-thermal noise had a clearly pronounced peak and a steep high-frequency cut-off. For an antenna biased to 1 V with respect to the plasma, the shot noise due to the ambient plasma was the dominant source of noise. For a an antenna at the floating potential the photoelectron shot noise coalesced with the shot and Nyquist noises of the ambient plasma to form almost a single curve. In the hot tenuous plasma out in Jupiter's magnetosphere, the antenna was short compared to the Debye length and the QTN spectrum was much flatter, with little or no peak at the plasma frequency and a very weak high-frequency cut-off. For an antenna biased to 1 V, the shot noise due to photoelectron emission dominated at Callisto's orbital position whereas at Ganymede's and Europa's orbital positions the Nyquist and shot noises of the ambient plasma particles were the dominant noise components. For an antenna at the floating potential, the shot and Nyquist noises of the ambient plasma also dominated the output noise, except at Europa's orbital position, where the quasi-thermal noise was the largest noise component for frequencies at and above the plasma frequency. The numerical calculations were performed using MATLAB. The code was made available in a Git repository at https://github.com/eliasodelstad/irfuproj_JUICE_noise.
8

IMPACT OF SCALING ON NOISE BEHAVIOR OF SUB-100NM MOSFETS

Tan, Ge 10 1900 (has links)
<p>This thesis presents the noise characterization, modeling, and simulation of deep sub-100nm bulk MOSFETs and predicts the noise behavior for future technology nodes. There are two main subjects discussed in this thesis. First, we present the impact of scaling of MOSFETs on channel thermal noise. Second, we investigate how the technology development can affect noise performance of a single transistor.</p> <p>In the first topic, analytical MOSFET channel thermal noise expressions are presented and verified. We calibrate our model using experimental data from devices in 60 nm technology node. The technology scaling issue of MOSFETs on noise performance is also examined by applying the parameters predicted in the International Technology Roadmap of Semiconductor (ITRS).</p> <p>In the second topic, a new figure of merit, namely equivalent noise sheet resistance, is defined for the first time to demonstrate the impact of scaling. This new figure of merit represents the intrinsic part of the equivalent noise resistance that excludes the geometry information of the device, which captures the technology related parameters of transistors. By defining equivalent noise sheet resistance, we can provide process information not only for IC designers but also for process engineers.</p> / Master of Applied Science (MASc)
9

Estimation of Inter-Cell Interference in 3G Communication Systems

Gunning, Dan, Jernberg, Pontus January 2011 (has links)
In this thesis the telecommunication problem known as inter-cell interference is examined. Inter-cell interference originates from users in neighboring cells and affects the users in the own cell. The reason that inter-cell interference is interesting to study is that it affects the maximum data-rates achievable in the 3G network. By knowing the inter-cell interference, higher data-rates can be scheduled without risking cell-instability. An expression for the coupling between cells is derived using basic physical principles. Using the expression for the coupling factors a nonlinear model describing the inter-cell interference is developed from the model of the power control loop commonly used in the base stations. The expression describing the coupling factors depends on the positions of users which are unknown. A quasi decentralized method for estimating the coupling factors using measurements of the total interference power is presented. The estimation results presented in this thesis could probably be improved by using a more advanced nonlinear filter, such as a particle filter or an Extended Kalman filter, for the estimation. Different expressions describing the coupling factors could also be considered to improve the result.
10

Advanced test mass suspensions and electrostatic control for AIGO

Lee, Benjamin H January 2007 (has links)
This thesis presents the research done towards the development of the final mirror suspension stage for the high power test facility at AIGO, Western Australia. One of the goals of the facility is to test advanced suspension methods that may be useful in future gravitational wave detectors. An in depth study of current mirror suspension techniques is presented and areas of possible improvement are highlighted. The extension of an existing suspension modelling toolkit written in Mathematica is also presented, where added functions allow one to include the violin modes of a suspension into their analysis. Through this tool, new suspension geometries boasting a lower number of violin modes with lower Q factors where developed. The orthogonal ribbon suspension and the thin tube suspension boast a lower number of lower Q violin modes compared to typical ribbon suspensions. For the latter, a reduction in the number of violin modes below 5kHz down to 5 and peak thermal noise amplitude by approximately 30dB is predicted. Presented also is the affect that such suspension geometries have on pendulum mode dilution factor and overall suspension thermal noise. It is seen that the violin mode improvement comes at a cost of a small increase in thermal noise above approximately 50Hz. A theoretical analysis of the AIGO cavity locking control scheme is also given. Issues of sensor noise and dynamic range are considered to produce a possible hierarchical locking method that would be compatible with advanced detectors. The resulting actuator force range requirements for AIGO at each actuation location on the vibration isolation system are given. Requirements of local controls before achieving cavity lock are also discussed. Finally, the suspension of a dummy sapphire mirror using removable modular niobium ribbons is presented. The design and performance of an electrostatic actuator and sensor for suspended mirror control is given. Initial experimental results of positioning and control of the final stage suspension through a digital interface is also included.

Page generated in 0.0429 seconds