Spelling suggestions: "subject:"[een] THERMOPLASTIC POLYURETHANE"" "subject:"[enn] THERMOPLASTIC POLYURETHANE""
1 |
Thermoplastic Polyurethane: A Complex Composite SystemRohm, Kristen Nicole 01 September 2021 (has links)
No description available.
|
2 |
EFFECT OF ADHESIVE ON THE SHAPE MEMORY BEHAVIOUR OF THERMOPLASTIC POLYURETHANE / EFFECT OF ADHESIVE ON THE SHAPE MEMORY BEHAVIOUR OF THERMOPLASTIC POLYURETHANE UNDER VARYING CONDITIONSXU, WENSEN 11 1900 (has links)
Taking advantage of their inherent abrasion resistant, weather resistant, and outstanding mechanical strength, film-grade thermoplastic polyurethanes (TPU) are currently being used as paint protective films but are also being considered for paint replacement within the automotive industry. Special grades of TPU with shape memory behaviour offer an additional feature of self-healing to decorative coatings but there are concerns of shape fixity at service temperatures which are above their glass transition temperature (Tg).
In this study, the shape memory behaviour of a developmental TPU film with Tg around room temperature was investigated. In order to understand the shape memory behaviour, the TPU film was laminated to a rigid polymer substrate of either polypropylene (PP) or acrylonitrile butadiene styrene (ABS). Three different acrylic based pressure sensitive adhesives were tested to bond the film to the substrate, namely a commercial high shear strength transfer tape and two solvent based adhesives of high and low shear strength that were manually cast. The influence of the adhesive was given significant attention as a variable of study in this thesis.
The characterization of all the polymeric films and substrates was based on a series of thermo-mechanical tests (tensile test, stress relaxation test, DSC and DMA). The adhesives were characterized by lap-shear test, peel test, and parallel plate rheometry. The results of material characterization were used to support the analysis and interpretation of shape memory behaviour.
The TPU based laminate was deformed by a matched mold thermoforming process with a pair of arched matched molds. The recovery behaviour of formed samples was quantified with a newly designed measurement method and the results were reported as recovery ratio and recovery rate. During recovery, the surrounding temperature was considered to be an important variable. The recovery behaviour of specimens was investigated in a controlled environment at setpoint temperatures of 15oC, 45oC or 65oC. No shape memory effect was found at 15oC (below TPU’s Tg), and yet both recovery ratio and recovery rate increased with temperature, from 45oC to 65oC (both above the TPU’s Tg). Since the recovery process was related to the elastic response of the hard segment phase within the TPU, the recovery stress was strongly related to strain conditions. By varying the draw depth into the mold from 6 mm, to 10 mm or 12 mm (8.86%, 15.90% or 19.88% strain, respectively), the recovery measurement results showed that the shape memory effect was weaker with lower strain as less recovery stresses were generated in the TPU film. With the draw depth of 10 mm, the highest recovery ratio and recovery rate were observed, and yet an inexplicable decrease in the recovery ratio and recovery rate occurred as the draw depth increased further from 10mm to 12mm. In regards to the influence by a substrate, TPU/PP laminate showed a more significant recovery behaviour than TPU/ABS laminates at both 45oC and 65oC. The elastic modulus of the substrate was found to have a key role on the recovery process; the recovery nature of formed laminate decreased with stiffer substrate.
Three adhesives with differing rheological and adhesion properties were tested to bond the TPU film to a substrate. The formed laminates with “strongest” adhesive (transfer tape) in terms of stiffness and adhesion strength showed the highest recovery ratio/rate over laminates made with “weaker” solvent cast adhesives, at both 45oC and 65oC. A finite element analysis (FEA) was employed to simulate the stress transfer within a multilayer structure bonded by a viscoelastic adhesive layer of varying stiffness; the simulated result showed that the relatively low stiffness adhesive could reduce the stress transfer efficiency within layers of a laminate. It suggested that more recovery stresses were transferred from TPU to substrate with a stiffer adhesive layer (transfer tape) and hence increased the recovery ratio and recovery rate. Therefore, adhesive with relatively low stiffness and adhesion strength could be a better choice to reduce the recovery effect of TPU laminate after forming. However, TPU was found to slide at the unsealed edge of formed laminate when the solvent based adhesives were used; the sliding behavior reduced the recovery by releasing stored recovery stress. In the case of HS and LS adhesives at high temperature (65oC), cohesive failure was observed when the edge of specimen was sealed led to a higher bending moment thus increased the recovery ratio over 24 hours investigations. Therefore, adhesives of weaker shear strength do not necessarily overcome the nature of shape recovery by the TPU when formed part shape needs to be preserved. / Thesis / Master of Applied Science (MASc) / Nowadays, smart materials in particular shape-memory polymers have been widely used in the industrial and medical applications. Thermoplastic polyurethane (TPU) is one of the significant shape memory polymer groups. The two-phase morphology of a typical TPU gives a unique shape memory behaviour over a defined temperature range. However, this shape memory effect affects the shape fixity of formed TPU. In this study, a special-grade TPU film was laminated to a rigid polymer substrate using selected pressure sensitive adhesives (PSAs). In order to investigate the effect of adhesive layer on the shape memory behaviour of this TPU based laminate, three PSAs with varying properties were applied. The laminate was thermoformed, quenched and processed in a temperature-controlled chamber with a designed recovery measurement method. The shape memory effect was observed at temperatures above the transition temperature of TPU, and this recovery effect was enhanced at higher temperature. Furthermore, the mechanical property of the substrate material was considered as a key factor on the recovery behaviour of the laminate; the recovery of the formed laminate was restricted with a stiffer substrate. The most significant discovery from the recovery results indicated that the shape memory effect was reduced with the adhesive with relatively low adhesion strength, however, the delamination of the laminate occurs with weaker adhesives.
|
3 |
Interactions of Cellulose Nanocrystals in Colloidal and Composite SystemsPritchard, Cailean Q. 16 November 2021 (has links)
Cellulose nanomaterials (CNMs) have been widely studied for their potential as sustainable fillers in polymer nanocomposites, optical responsiveness in suspensions and thin films, and their orientation-dependent liquid crystalline behavior in suspensions. Cellulose nanocrystals (CNCs) have seen a particular prominence due to their versatility across a breadth of applications. The unique structure of CNCs, represented as nanoscale rods with a slight twist, provides for their self-assembly into liquid crystalline phases when their concentration is increased and can be used to generate iridescent materials with tunable wavelengths. Further, CNCs are often used as fillers in nanocomposites, due to their high single crystal Young's modulus, achieving vast enhancements in stiffness when incorporated above a critical concentration where a percolating network is formed. The breadth of applications for CNCs strongly depend not only on their crystalline structure, but crucially on the interactions between particles. These interactions are well-known, yet a complete understanding to enable the full exploitation of the properties attainable in CNC-based materials is lacking. The principal emphasis of this dissertation lies in further improving our comprehension of the interactions between CNCs across a variety of applications such that their full potential can be achieved. A review of the current research of CNC-based materials is provided to guide the discussion herein.
Interparticle interactions are studied in aqueous suspensions of CNCs in evaporating sessile droplets. This system provides a complex interrelationship between mass, heat, and momentum transport which collectively provide a change in the local CNC concentration as a function of time. CNC interactions can be controlled throughout the evaporation process as a result of these local concentration variations. We implement a novel approach using time-resolved polarized light microscopy to characterize the evolution of these particle interactions via the orientation of CNCs as a function of CNC concentration and droplet volume. Ultimately, boundary interactions at the leading edge of the contact line during evaporation was found to drive a cascade of local CNC interactions resulting in alignment post-deposition. Computational analysis evaluated the influence of evaporation-induced shear flow during evaporation. Orientation was found to be independent of the bulk fluid flow, corroborating the importance of interparticle interactions on the ensuing alignment of CNCs. Characterization of an evaporating droplet of initially liquid crystalline suspension of CNCs verified the simulations which predicted that orientation was not coupled with entrainment. Finally, the multiple modes of orientation showed that local control over CNC properties can be realized through governance of the interactions between CNCs.
The interactions of CNCs in polymer nanocomposites were also studied for the development of smart materials which can adapt their properties in response to external stimuli. A well-known example of this phenomena is found when CNCs are introduced as fillers in thermoplastic polyurethanes (TPUs) above a critical concentration required to achieve percolation. The interactions between CNCs in the percolating network provide a strong enhancement to the modulus of these materials. However, these materials soften upon exposure to water following the disruption of inter-CNC hydrogen bonding by the diffusing water molecules, as prevailing theories suggest. CNCs simultaneously enhance water transport into hydrophobic matrices. Thus, a complete understanding of the interrelationship between the mass transport and mechanical performance can facilitate the development of humidity sensing or shape memory materials which operate as a result of the interactions between CNCs inside of a polymer matrix. Despite an increase in the equilibrium water uptake with increasing CNC concentration, a decrease in the apparent diffusivity of water within the nanocomposites was observed as a result of swelling of the bulk polymer. Additionally, we developed a modification to the commonly used percolation model to predict the time-dependent evolution of storage modulus during water-induced softening. We found that the solvent mass transport can be directly coupled to the mechanical integrity of the percolating network of CNCs by evaluating the hydrogen bonding state of the network as a function of time.
Finally, a novel nanocomposite filler comprised of CNCs and 2,2,6,6- tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibrils (TOCNFs) was prepared through solution casting to improve the mechanical performance of the individual reinforcements alone. The physical interaction length is increased by incorporating CNMs of different length scales resulting in increased tensile strength and elongation. Further, the morphology, evaluated with polarized light microscopy, atomic force microscopy, and simulated with dissipative particle dynamics, revealed the combined fillers exhibit a cooperative enhancement between CNMs. Characterization of the crystallinity through x-ray diffraction confirmed the interactions occur primarily between the crystalline domains of each material. Accordingly, the combination of CNMs resulted in nanocomposite fillers which can be implemented such that the weak interfaces with polymer matrices can be bridged with fillers providing reinforcement over a broader length scale. / Doctor of Philosophy / Cellulose nanocrystals (CNCs) are sustainable and biorenewable nanoparticles derived from cellulose. These materials have been widely studied and are commonly used among a plethora of applications such as in reinforcing fillers in polymer nanocomposites, optically responsive materials that can be used in packaging or anti-counterfeiting technologies, as well as in suspension modifiers for skin care products. These techniques tune the interactions between individual CNCs to modify the behavior of the bulk material. The specific interactions are well-known, yet a complete understanding of the influence of these interactions resulting in the utility of CNC-based materials in various applications is lacking. The principal emphasis of this dissertation lies in further improving our comprehension of the interactions between CNCs across a variety of applications such that their full potential can be achieved.
Interactions between CNCs were investigated in three systems comprising of a range of typical use cases for CNC-based materials. The behavior of CNCs was examined in evaporating droplets of aqueous suspensions. These materials exhibited a change in orientation in the final deposit which is dependent on variations in local CNC concentration during drying. These concentration changes describe the relative strength of interactions between CNCs which ultimately influences the final alignment of these materials. Further, these interactions provide a pathway to deposit a controlled orientation of CNCs on a substrate which can be utilized for optically responsive materials or serve as templates for other orientation-dependent materials.
CNCs were also incorporated into a thermoplastic polyurethane (TPU) matrix to provide increased stiffness. In these composites, water preferentially interacts with CNCs preventing the nanoparticles from interacting with one another. As water is absorbed, these materials soften as a result of the reduced interactions between CNCs. We investigated the influence of dynamically changing CNC interactions on the mechanical performance of these materials during water absorption and developed an analytical model to describe the observed softening behavior.
Finally, CNCs were combined with 2,2,6,6- tetramethylpiperidine 1-oxyl oxidized cellulose nanofibers (TOCNFs) and cast into thin films. The mechanical properties of these differently sized, yet chemically similar, nanoparticles were compared as a function of CNC composition. A cooperative enhancement of the ultimate tensile strength and elongation was observed at low CNC loadings where CNCs and TOCNFs were found to self-organize during casting in a mutually beneficial manner.
|
4 |
Experimental analysis of the tensile property of FFF-printed elastomersLin, X., Coates, Philip D., Hebda, Michael J., Wang, R., Lu, Y., Zhang, L. 12 January 2021 (has links)
Yes / Designing and manufacturing functional parts with enhanced mechanical property is a major goal of fused filament fabrication (FFF) for polymeric elastomers, which exhibits major advantages in producing such parts with a range of structures. But the unsatisfactory mechanical performance constrains greatly its real application and there is yet no consensus in the mechanical characterization of printed samples. This work takes the nozzle height as the considered factor and tests the tensile property of FFF-printed thermoplastic polyurethane (TPU). Rheological property of the TPU melt, represented here by die swell behavior and shear viscosity, were measured initially to obtain a preliminary assessment of the material suitability and an optimization of melt extrusion conditions for FFF processing. Then correlation between the cross-section profile of deposited bead and the tensile performance of printed sample were evaluated. Both the shape of deposited bead and the bonding strength of two adjacent beads are emphasized when explaining the measured tensile strength. The significance of molecular permeation efficiency at bead-bead interfaces, and bonding-releasing patterns between adjacent beads to the tensile failure of printed objects is discussed. / The support provided by China Scholarship Council (CSC, 201806465028) for Xiang Lin during his academic visit in University of Bradford is acknowledged.
|
5 |
Development of Innovative Gas-assisted Foam Injection Molding TechnologyJung, Peter Ungyeong 10 January 2014 (has links)
Injection molding technology is utilized for a wide range of applications from mobile phone covers to bumper fascia of automotive vehicles. Foam injection molding (FIM) is a branched manufacturing process of conventional injection molding, but it was designed to take advantage of existing foaming technology, including material cost saving and weight reduction, and to provide additional benefits such as improvement in dimensional stability, faster cycle time, and so on. Gas-assisted injection molding (GAIM) is another supplemental technology of injection molding and offers several advantages as well. This thesis study takes the next step and develops innovative gas-assisted foam injection molding (GAFIM) technology, which is the result of a synergistic combination of two existing manufacturing technologies, FIM and GAIM, in order to produce a unique thermoplastic foam structure with proficient acoustic properties. The foam structure manufactured by GAFIM consists of a solid skin layer, a foam layer, and a hollow core; and its 6.4-mm thick sample outperformed the conventional 22-mm thick polyurethane foam in terms of the acoustic absorption coefficient. With respect to foaming technology, GAFIM was able to achieve a highly uniform foam morphology by completely decoupling the filling and foaming phases. Moreover, the additional shear and extensional energies from GAFIM promoted a more cell nucleation-dominant foaming behavior, which resulted in higher cell density and smaller cell sizes with both CO2 and N2 as physical blowing agents. Lastly, it provided more direct control of the degree of foaming because the pressure drop and pressure drop rate was controlled by a single parameter, that being the gas injection pressure. In summary, innovative, gas-assisted foam injection molding technology offers not only a new strategy to produce acoustically functioning thermoplastic foam products, but also technological advantages over the conventional foam injection molding process. Gas-assisted foam injection molding can become the bedrock for more innovative future applications.
|
6 |
Development of Innovative Gas-assisted Foam Injection Molding TechnologyJung, Peter Ungyeong 10 January 2014 (has links)
Injection molding technology is utilized for a wide range of applications from mobile phone covers to bumper fascia of automotive vehicles. Foam injection molding (FIM) is a branched manufacturing process of conventional injection molding, but it was designed to take advantage of existing foaming technology, including material cost saving and weight reduction, and to provide additional benefits such as improvement in dimensional stability, faster cycle time, and so on. Gas-assisted injection molding (GAIM) is another supplemental technology of injection molding and offers several advantages as well. This thesis study takes the next step and develops innovative gas-assisted foam injection molding (GAFIM) technology, which is the result of a synergistic combination of two existing manufacturing technologies, FIM and GAIM, in order to produce a unique thermoplastic foam structure with proficient acoustic properties. The foam structure manufactured by GAFIM consists of a solid skin layer, a foam layer, and a hollow core; and its 6.4-mm thick sample outperformed the conventional 22-mm thick polyurethane foam in terms of the acoustic absorption coefficient. With respect to foaming technology, GAFIM was able to achieve a highly uniform foam morphology by completely decoupling the filling and foaming phases. Moreover, the additional shear and extensional energies from GAFIM promoted a more cell nucleation-dominant foaming behavior, which resulted in higher cell density and smaller cell sizes with both CO2 and N2 as physical blowing agents. Lastly, it provided more direct control of the degree of foaming because the pressure drop and pressure drop rate was controlled by a single parameter, that being the gas injection pressure. In summary, innovative, gas-assisted foam injection molding technology offers not only a new strategy to produce acoustically functioning thermoplastic foam products, but also technological advantages over the conventional foam injection molding process. Gas-assisted foam injection molding can become the bedrock for more innovative future applications.
|
7 |
Investigations on post-processing of 3D printed thermoplastic polyurethane (TPU) surfaceBoualleg, Abdelmadjid January 2019 (has links)
Abstract The reduction of product development cycle time is a major concern in industries to remain competitive in the marketplace. Among various manufacturing technologies, 3D printing technology or also known as additive manufacturing (AM), has shown excellent potential to reduce both the cycle time and cost of the product due to its lower consumption of energy and material usage compared to conventional manufacturing. Fused deposition modeling (FDM) is one of the most popular additive manufacturing technologies for various engineering applications which has the ability to build functional parts having complex geometrical shapes in reasonable build time and can use less expensive equipment and cheaper material. However, the quality of parts produced by FDM has some challenges such as poor surface quality. The focus of this study is improving the surface quality produced by Fused Deposition Modeling. The investigations include 3D printing study samples with optimum parameter settings and post-processing the sample’s surfaces by laser ablation. Taguchi’s design of the experiment is employed to identify the optimum settings of laser ablation the FDM surfaces. Laser power, laser speed and pulse per inch (PPI) are the laser settings considered in the study. Characterization of the samples are done using Dino-lite USB camera images and GFM Mikro-CAD fringe projection microscope is used to measure the surface roughness of the samples. Areal surface parameters are used to characterize and compare the surfaces of as printed and laser ablated. It is observed that the effect of laser ablation varies with respect to surfaces printed at different angles and laser-ablated with different settings. The surface roughness of laser-ablated surfaces is found to be lower than as-printed FDM surfaces.
|
8 |
Enhanced Coarse-Graining for Multiscale Modeling of ElastomersUddin, Md Salah 12 1900 (has links)
One of the major goal of the researchers is to reduce energy loss including nanoscale to the structural level. For instance, around 65% of fuel energy is lost during the propulsion of the automobiles, where 11% of the loss happens at tires due to rolling friction. Out of that tire loss, 90 to 95% loss happens due to hysteresis of tire materials. This dissertation focuses on multiscale modeling techniques in order to facilitate the discovery new rubber materials. Enhanced coarse-grained models of elastomers (thermoplastic polyurethane elastomer and natural rubber) are constructed from full-atomic models with reasonable repeat units/beads associated with pressure-correction for non-bonded interactions of the beads using inverse Boltzmann method (IBM). Equivalent continuum modeling is performed with volumetric/isochoric loading to predict macroscopic mechanical properties using molecular mechanics (MM) and molecular dynamics (MD). Glass-transition and rate-dependent mechanical properties along with hysteresis loss under uniaxial deformation is predicted with varying composition of the material. A statistical non-Gaussian treatment of a rubber chain is performed and linked with molecular dynamics in order predict hyperelastic material constants without fitting with any experimental data.
|
9 |
Optoelectronic Applications For Bio-Based MaterialsMcMaster, Michael S. 23 May 2019 (has links)
No description available.
|
10 |
PROCESSING AND KINETIC STUDIES OF THE REACTIVE BLENDS OF POLY(VINYL CHLORIDE) AND THERMOPLASTIC POLYURETHANESBaena, Johanna January 2006 (has links)
No description available.
|
Page generated in 0.0548 seconds