Spelling suggestions: "subject:"[een] THIN FILMS"" "subject:"[enn] THIN FILMS""
781 |
Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronicsDickey, Kimberly Christine 28 August 2008 (has links)
Not available / text
|
782 |
Novel organometallic precursors for the Chemical Vapor Deposition of metal thin filmsRivers, Joseph Henry 07 December 2010 (has links)
With the growing demand for miniaturization of devices and for new materials with useful properties, the use of Chemical Vapor Deposition (CVD) for the manufacture of thin films is receiving growing attention. The synthesis of potentially volatile metal complexes and investigation of their use as CVD precursors is an important part of this process. The research presented addresses several major areas of this process, (i) the identification and synthesis of ligands which can impart volatility to a metal complex, (ii) the synthesis, characterization, and assessment of volatility of metal complexes containing these ligands, and (iii) the full materials characterization of thin films grown with these complexes. The use of trimethylphosphine, bis(trifluoromethyl)pyrazolate, and bis(trifluoromethyl)pyrrolyl ligands have been successfully used to synthesize volatile new complexes of cobalt, rhodium, and nickel, some of which show promise for use as potential CVD precursors. / text
|
783 |
Dynamic response of polycrystalline organic thin film transistorsCobb, Brian Hardy, 1982- 07 January 2011 (has links)
In this dissertation, charge transport through organic field effect transistors is explored. In particular, small molecule-based devices consisting of Pentacene semiconducting thin films are investigated. The relationship between electric field and carrier velocity is explored over a wide range of electric fields. These velocities are then compared to directly measured velocities measured from transient measurements.
New device structures are fabricated in order to provide low voltage operation, along with a method to stabilize the output response and reduce bias stress effects. A novel method is proposed to investigate the dynamics of trap response rate in highly localized systems through the characterization of the large signal frequency response of a
vii
device. This method is then used to gain greater insight into bias stress effects and the ability of a transistor to respond to a rapidly changing input.
A greater understanding of the transport of charge through a channel is obtained, leading to a more realistic picture in which a single mobility value is an insufficient description of carrier transport through a material. / text
|
784 |
Deposition, surface chemistry, and electrochemistry of YBa₂Cu₃O₇₋(subscript delta) materialsWells, Andrea Dawn 11 April 2011 (has links)
Not available / text
|
785 |
Deposition of epitaxial Si/Si-Ge/Ge and novel high-K gate dielectrics using remote plasma chemical vapor depositionChen, Xiao, 1972- 29 June 2011 (has links)
Not available / text
|
786 |
Low temperature scanned probe microscopy studies of magnetic oxidesLee, Alfred K. 06 July 2011 (has links)
This dissertation is divided into two parts. In the first, the general paradigm of scanned probe microscopy is outlined with a focus on atomic force microscopy and a few of its variations. Magnetic force microscopy is covered in detail as it forms the basis of the second part of this dissertation. The core elements and extra features of the instrument are described with attention paid to the upgrades made by the author. In the second part of this dissertation, background information on perovskite oxides and the inverse spinel system, magnetite, is given. Magnetic force microscopy studies were done on three thin film systems and are detailed. In the first study, ferromagnetic manganite films were subjected to discontinuous changes in strain due to structural transitions in their barium titanate substrates. The resulting effect on the magnetic domains was observed. In the second study, the ferromagnetism of a tensile-strained LaCoO₃ film was studied across temperatures from 4.3 K to 90 K and applied fields up to [mu]₀H=1.1 T. Finally, the properties of antiphase domains in magnetite films of varying film strain due to transition metal buffer layers was probed by imaging the magnetic domains which are pinned to the antiphase boundaries. / text
|
787 |
Fabrication and characterization of thin films and optical nanocompositesBaek, Jonghoon, 1970- 10 August 2011 (has links)
Not available / text
|
788 |
Developing non-invasive processing methodologies and understanding the materials properties of solution-processable organic semiconductors for organic electronicsDickey, Kimberly Christine, 1977- 23 August 2011 (has links)
Not available / text
|
789 |
Field effect measurements on amorphous silicon produced by chemical vapor depositionHey, Hans Peter Willy January 1981 (has links)
No description available.
|
790 |
Microgel-based coatings and their use as self-healing, dynamic substrates for bioapplicationsSpears, Mark William 12 January 2015 (has links)
Microgels are solvent swollen, cross-linked polymer macromolecules of micro or nanoscale dimensions. In this work, microgels are used as versatile building blocks in layer-by-layer assemblies to form thin coatings. While conceptually simple materials, these microgel-based films actually possess extremely complex behavior as evidenced by two particular areas. First, microgel films have self-healing properties, allowing them to rapidly recover from damage in the presence of solvent. The healing step requires rearrangement of film components, demonstrating the dynamic and mobile nature of the films. Second, fibroblasts display complex behavior on microgel films arising from the properties of the coating. A chemical crosslinking treatment of the film affects the film network structure in a concentration-dependent manner. These network changes result in altered mechanical properties that are the primary controlling factor in determining cell behavior at the interface. These data suggest that fibroblasts are not solely controlled by the film elasticity, but rather by the viscoelasticity, and there is a viscoelastic range that results in maximal cell spreading.
|
Page generated in 0.0278 seconds