• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 19
  • 15
  • 15
  • 7
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 271
  • 119
  • 105
  • 52
  • 35
  • 34
  • 33
  • 30
  • 30
  • 30
  • 27
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Développement d'un pixel innovant de type "temps de vol" pour des capteurs d'images 3D-CMOS / 3D image sensor, Time of flight pixel, Continuous-Wave modulation, buried channel transfer gate, gradual epitaxial layer

Rodrigues Gonçalves, Boris 09 January 2018 (has links)
Dans l'objectif de développer des nouveaux capteurs d'image 3D pour des applications émergeantes, nous avons étudié un pixel de mesure de distance de type « temps de vol ». Nous avons proposé une nouvelle architecture de pixel basée sur la méthode « Continuous-Wave modulation » à trois échantillons par pixel. Cette méthode repose sur la mesure d'un déphasage entre la source lumineuse modulée en amplitude envoyée (source proche infrarouge) et le signal réfléchi par la scène à capturer. Le pixel de dimensions 6,2μm x 6,2μm intègre une photodiode pincée, trois chemins de transfert de charges pour l'échantillonnage successif du signal modulé reçu, et d'un quatrième chemin pour évacuer les charges excédentaires. Les différents chemins de transfert sont constitués d'une grille de transfert de charges de la photodiode vers une mémoire de stockage à canal enterré pour améliorer le rendement et la vitesse de transfert de charges; d'une mémoire à stockage en volume à base de tranchées capacitives profondes afin d'augmenter la dynamique; d'un substrat dont l'épaisseur et le profil de dopage ont été optimisés afin de collecter efficacement les charges photogénérées et ainsi augmenter les performances de démodulation. Un véhicule de test constitué d'une matrice de résolution de 464x197 pixels (QVGA) a été fabriqué, différentes variantes de pixels et différents essais technologiques ont été étudiées et analysées. La fonctionnalité du pixel a été vérifiée pour des fréquences de démodulation de 20MHz à 165MHz, utilisant une source laser de longueur d'onde 850nm ou 950nm. Une première image de profondeur acquise utilisant une matrice de test est une validation du pixel proposé / In order to develop new 3D image sensors for emerging applications, we studied “time of flight” pixel for distance measurement. We have proposed a new pixel architecture based on the "Continuous-Wave Modulation" method with three samples per pixel. This method is based on the measurement of a phase shift between the transmitted amplitude modulated light source (near-infrared source) and the signal reflected by the scene to be captured. The pixel of dimensions 6.2 μm x 6.2 μm integrates a pinned photodiode, three charge transfer paths for successive sampling of the received modulated signal, and a fourth path for anti-blooming purpose. The different paths are controlled by a buried-channel transfer gate for charges transfer from the photodiode to memory in order to improve the efficiency and speed of the charge transfer; A fully depleted memory based on capacitive deep trenches is used to increase the memory storage capacitance; thickness and doping profile of the substrate have been optimized to efficiently collect photogenerated and increase demodulation performance. The designed 464x197-pixel (QVGA) test chip has been fabricated, different pixel variants and different technology trials have been studied and analyzed. Pixel functionality has been verified for demodulation frequencies from 20 to 165MHz, using a laser source of wavelength 850nm or 950nm. A first acquired depth image using the test chip made is a validation of the proposed pixel
212

Contribution aux architectures protocolaires pour un système de localisation dans un réseau de capteurs sans fil basé sur une couche physique 802.15.4a UWB / Contribution to protocol architectures for a location system in a wireless sensor network based on a 802.15.4a UWB physical layer

Fofana, Nezo Ibrahim 06 July 2017 (has links)
Les réseaux de capteurs sans fil ont connu depuis quelques années un intérêt majeur dans tous les domaines d’activités. Une des informations attendue est la localisation des nœuds capteurs ; pourtant, compte-tenu des contraintes imposées aux capteurs en termes d’encombrement et d’énergie, il est peu envisageable d’équiper le capteur d’équipements spécifiques dédié à la localisation comme un récepteur GPS. Dès lors, localiser le capteur en exploitant le signal de communication est une option intéressante. A l’inverse des techniques Range-Free exploitant des hypothèses de connectivité du réseau, les techniques généralement connues pour atteindre une bonne précision de localisation par la radio sont de type Range-Based, et se basent, dans notre cas, sur la mesure du temps de vol du signal radio UWB. Nos contributions portent alors sur le choix d’une couche physique performante, sur la mise en place d’outils favorisant une bonne précision temporelle dans les échanges radio, et l’élaboration d’un protocole original d’évaluation de la distance. Les travaux présentés dans ce manuscrit visent donc à aborder la problématique générale de la localisation d’intérieur dans les réseaux de capteurs sans fil, et en particulier la fonctionnalité de ranging qui est le mécanisme d’évaluation de la distance entre les nœuds. Dans un premier temps, nous implémentons puis évaluons les protocoles de référence rencontrés dans la littérature. Nous identifions et corrigeons par la suite, les erreurs susceptibles de biaiser la métrique du temps de vol. Nous proposons alors le protocole 2M-TWR (2 Messages – Two Way Ranging) comme une amélioration du protocole de référence TWR. Enfin, nous proposons et implémentons le protocole BB-TWR (Beacon Based –TWR), qui permet d’effectuer le ranging, de manière séquentielle et non séquentielle, en incluant les informations temporelles nécessaires dans tout trafic natif diffusé existant. Les preuves de concept ont été prototypées et évaluées sur un banc de test réel. / In recent years, Wireless Sensor Networks has gained an important interest in all fields of activity. One of the expected information is the sensor nodes localization; However, due to the sensors constraints in terms of memory and energy, it is not possible to equip the sensor with specific equipment dedicated to the localization as the GPS receiver. Thus, locating the sensor by using the communication signal is an interesting option. In contrast to Range-Free techniques which use assumptions of network connectivity, the Range-Based techniques are known to reach good localization accuracy and, in our case, they are based on the measurement of the time of flight of the radio signal UWB. Our contributions focus on the choice of an efficient physical layer, on the implementation of tools that promote a good temporal accuracy in radio exchanges, and the development of an original distance evaluation protocol. Research works presented in this manuscript aim to address the global general problem of indoor localization in wireless sensor networks, and particularly the ranging functionality which is the distance evaluation mechanism between nodes. At first we implemented and evaluated the well-known protocols encountered in the literature. Then, we identify and correct errors that may bias the Time of flight metric. We propose the 2M-TWR protocol (2 Messages - Two Way Ranging) as an improvement to the TWR reference protocol. Finally, we propose and implement the BB-TWR (Beacon Based-TWR) protocol, which is able to perform ranging, sequentially and non-sequentially, by including the necessary time information in any existing broadcast native traffic. The proofs of concept were prototyped and evaluated on a real testbed.
213

Comprehensive two-dimensional gas chromatography (GCxGC ) for drug analysis

Song, Shin Miin, shinmiin@singnet.com.sg January 2006 (has links)
Separation technologies have occupied a central role in the current practices of analytical methods used for drug analysis today. As the emphasis in contemporary drug analysis shifts towards ultra-trace concentrations, the contribution from unwanted matrix interferences takes on greater significance. In order to single out a trace substance with confidence from a rapidly expanding list of drug compounds (and their metabolites) in real complex specimens, analytical technologies must evolve to keep up with such trends. Today, the task of unambiguous identification in forensic toxicology still relies heavily upon chromatographic methods based on mass spectrometric detection, in particular GC-MS in electron ionisation (EI) mode. Although the combined informing power of (EI) GC-MS has served faithfully in a myriad of drug application studies to date, we may ask if (EI) GC-MS will remain competitive in meeting the impending needs of ultra-trace drug analysis in the fut ure? To what extent of reliability can sample clean-up strategies be used in ultra-trace analysis without risking the loss of important analytes of interest? The increasing use of tandem mass spectrometry with one-dimensional (1D) chromatographic techniques (e.g. GC-MS/MS) at its simplest, considers that single-column chromatographic analysis with mass spectrometry alone is not sufficient in providing unambiguous confirmation of the identity of any given peak, particularly when there are peak-overlap. Where the mass spectra of the individual overlapping peaks are highly similar, confounding interpretation of their identities may arise. By introducing an additional resolution element in the chromatographic domain of a 1D chromatographic system, the informing power of the analytical system can also be effectively raised by the boost in resolving power from two chromatographic elements. Thus this thesis sets out to address the analytical challenges of modern drug analysis through the application of high resolut ion comprehensive two-dimensional gas chromatography (GC„eGC) to a series of representative drug studies of relevance to forensic sciences.
214

Structural Characterisation, Residual Stress Determination and Degree of Sensitisation of Duplex Stainless Steel Welds

Gideon Abdullah, Mohammed Abdul Fatah, barrygideon@hotmail.com January 2009 (has links)
Welding of duplex stainless steel pipeline material for the oil and gas industry is now common practice. To date, research has been conducted primarily on the parent material and heat affected zones in terms of its susceptibility to various forms of corrosion. However, there has been little research conducted on the degree of sensitisation of the various successive weld layers, namely the root, fill and cap layers. The focus of this research study was to: (i) provide an in-depth microstructural analysis of the various weld passes, (ii) study the mechanical properties of the weld regions; (iii) determine degree of sensitisation of the various weld passes; and (iv) investigate the residual stress levels within the various regions/ phases of the welds. Four test conditions were prepared using manual Gas Tungsten Arc Welding with 'V' and 'U' bevel configuration. Structural analysis consisted of (i) optical microscopy, scanning electron microscopy and magnetic force microscopy; (ii) ferrite determination using Magna-Gauge, Fischer Ferrite-scope and Point Count method. Mechanical testing consisted of Vickers hardness measurements, Charpy impact studies and transverse tensile testing. The degree of sensitisation was determined by three test methods: a modified ASTM A262, ASTM A923 and a modified Double Loop Electrochemical Potentiodynamic Reactivation (DL-EPR) test. Residual stress levels were determined using two neutron diffraction techniques: a reactor source and a time of flight spallation source. Microstructure observed by optical microscopy and magnetic force microscopy shows the formation of both fine and coarse structures within the weld metal. There was no evidence of secondary austenite, being present in any of the weld metal conditions examined. In addition, no detrimental intermetallic phases or carbides were present. The DL-EPR test results revealed that the fill layer regions for all four conditions and the base material showed the highest values for Ir/Ia and Qr/Qa. All four test conditions passed the ASTM A262 and A923 qualitative type tests, even under restricted and modified conditions. Residual stress measurements by neutron diffraction conducted at Lucas Heights Hi-Flux Reactor revealed that the ferrite phase stress was tensile in the heat affected zones and weld, and appeared to be balanced by a local compressive austenite phase stresses in the normal and transverse directions. Residual stress measurements by neutron diffraction conducted at Los Alamos Nuclear Science Centre revealed that in the hoop direction, ferrite (211) and austenite (311) exhibit tensile strains in the weld. In the axial and radial direction, the strains for both phases were more compressive. Correlations between the degree of sensitization and microstructural changes / ferrite content were observed. Higher degrees of sensitization (Ir/Ia and Qr/Qa) were associated with reduced ferrite (increased austenite) content. Correlations between the stresses generated, the evolved microstructures and degree of sensitization were evident. Stresses within the cap region were generally shown to be of a tensile nature in the transverse and longitudinal direction. In summary, the study has shown that correlations exist between the weld microstructure, susceptibility to sensitisation and levels / distribution of internal stresses within the weld regions.
215

ToF-SIMS Investigations on Dental Implant Materials and Adsorbed Protein Films

Bernsmann, Falk 13 July 2007 (has links) (PDF)
In this work the two experimental dental implant materials FAT and FAW, made of fluoroapatite particles embedded in polymer matrices, and films of the proteins lysozyme, amylase and bovine serum albumin (BSA), adsorbed to the two dental implant materials, were investigated with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the multivariate data analysis technique discriminant principal component analysis (DPCA).
216

3D imaging using time-correlated single photon counting

Neimert-Andersson, Thomas January 2010 (has links)
<p>This project investigates a laser radar system. The system is based on the principles of time-correlated single photon counting, and by measuring the times-of-flight of reflected photons it can find range profiles and perform three-dimensional imaging of scenes. Because of the photon counting technique the resolution and precision that the system can achieve is very high compared to analog systems. These properties make the system interesting for many military applications. For example, the system can be used to interrogate non-cooperative targets at a safe distance in order to gather intelligence. However, signal processing is needed in order to extract the information from the data acquired by the system. This project focuses on the analysis of different signal processing methods.</p><p>The Wiener filter and the Richardson-Lucy algorithm are used to deconvolve the data acquired by the photon counting system. In order to find the positions of potential targets different approaches of non-linear least squares methods are tested, as well as a more unconventional method called ESPRIT. The methods are evaluated based on their ability to resolve two targets separated by some known distance and the accuracy with which they calculate the position of a single target, as well as their robustness to noise and their computational burden.</p><p>Results show that fitting a curve made of a linear combination of asymmetric super-Gaussians to the data by a method of non-linear least squares manages to accurately resolve targets separated by 1.75 cm, which is the best result of all the methods tested. The accuracy for finding the position of a single target is similar between the methods but ESPRIT has a much faster computation time.</p>
217

Characterisation of the Neutron Wall and of Neutron Interactions in Germanium-Detector Systems

Ljungvall, Joa January 2005 (has links)
<p>A Monte Carlo simulation of the Neutron Wall detector system has been performed using Geant4, in order to define optimum conditions for the detection and identification of multiple neutrons. Emphasis was put on studying the scattering of neutrons between different detectors, which is the main source of the apparent increase of the number of detected neutrons. The simulation has been compared with experimental data. The quality of neutron gated γ-ray spectra was improved for both two- and three-neutron evaporation channels. The influence of small amounts of γ rays mis-interpreted as neutrons was investigated. It was found that such γ rays dramatically reduce the quality of neutron gated γ-ray spectra.</p><p>The interaction properties of fast neutrons in a closed-end coaxial and a planar high-purity germanium detector (HPGe) were studied. Digitised waveforms of HPGe preamplifier signals were recorded for time-of-flight separated neutrons and γ rays, emitted by a <sup>252</sup>Cf source. The experimental waveforms from the detectors were compared to simulated pulse shapes. In the analysis, special emphasis was given to the detection of elastically scattered neutrons, which may be an important effect to take into account in future spectrometers based on γ-ray tracking. No differences between neutron and γ-ray induced pulse shapes were found in this work.</p><p>A Monte Carlo simulation of the interactions of fast neutrons in the future 4π γ-ray spectrometer AGATA was also performed, in order to study the influence of neutrons on γ-ray tracking. It was shown that although there is a large probability of detecting neutrons in AGATA, the neutrons decrease the photo-peak efficiency of AGATA by only about 1% for each neutron emitted in coincidence with γ rays. The peak-to-background ratios in γ-ray spectra are, however, reduced to a much larger extent. The possibility of using AGATA as a neutron detector system was also investigated.</p>
218

Characterisation of the Neutron Wall and of Neutron Interactions in Germanium-Detector Systems

Ljungvall, Joa January 2005 (has links)
A Monte Carlo simulation of the Neutron Wall detector system has been performed using Geant4, in order to define optimum conditions for the detection and identification of multiple neutrons. Emphasis was put on studying the scattering of neutrons between different detectors, which is the main source of the apparent increase of the number of detected neutrons. The simulation has been compared with experimental data. The quality of neutron gated γ-ray spectra was improved for both two- and three-neutron evaporation channels. The influence of small amounts of γ rays mis-interpreted as neutrons was investigated. It was found that such γ rays dramatically reduce the quality of neutron gated γ-ray spectra. The interaction properties of fast neutrons in a closed-end coaxial and a planar high-purity germanium detector (HPGe) were studied. Digitised waveforms of HPGe preamplifier signals were recorded for time-of-flight separated neutrons and γ rays, emitted by a 252Cf source. The experimental waveforms from the detectors were compared to simulated pulse shapes. In the analysis, special emphasis was given to the detection of elastically scattered neutrons, which may be an important effect to take into account in future spectrometers based on γ-ray tracking. No differences between neutron and γ-ray induced pulse shapes were found in this work. A Monte Carlo simulation of the interactions of fast neutrons in the future 4π γ-ray spectrometer AGATA was also performed, in order to study the influence of neutrons on γ-ray tracking. It was shown that although there is a large probability of detecting neutrons in AGATA, the neutrons decrease the photo-peak efficiency of AGATA by only about 1% for each neutron emitted in coincidence with γ rays. The peak-to-background ratios in γ-ray spectra are, however, reduced to a much larger extent. The possibility of using AGATA as a neutron detector system was also investigated.
219

Upgrading the Control and Monitoring system for the TOFOR neutron time-of-flight spectrometer at JET

Valldor-Blücher, Johan January 2013 (has links)
This report describes the development and testing of the upgraded Control and Monitoring (C&amp;Mu) system for the TOFOR neutron spectrometer. TOFOR is currently performing plasma diagnostics for the JET experimental fusion reactor. The purpose of the C&amp;Mu system is to enable monitoring of the amplitude dependent time delays of TOFOR. In order to perform this monitoring function the C&amp;Mu system must comprise a pulsed light source with variable intensity and a reference time signal. In this work a reference time signal has been retrieved from a laser comprising a motorized polarizer. This has been accomplished by installing a photomultiplier tube and a beamsplitter cube. The beamsplitter cube splits the laser light into two parts and directs one part into the photomultiplier tube. The photomultiplier tube converts the light into an electrical reference time signal. A control program has been developed for the motorized polarizer, enabling the user to vary the intensity of the light over the interval from 0% to 100%. The C&amp;Mu system has been performance tested and it was found that the time resolution of the system is about 0.1ns and the time stability of the system is about 0.12ns over 27 hours. The system is more than adequate to monitor variations in time delays at TOFOR of several nanoseconds, over a full JET day. The C&amp;Mu system is ready to be installed on TOFOR.
220

3D imaging using time-correlated single photon counting

Neimert-Andersson, Thomas January 2010 (has links)
This project investigates a laser radar system. The system is based on the principles of time-correlated single photon counting, and by measuring the times-of-flight of reflected photons it can find range profiles and perform three-dimensional imaging of scenes. Because of the photon counting technique the resolution and precision that the system can achieve is very high compared to analog systems. These properties make the system interesting for many military applications. For example, the system can be used to interrogate non-cooperative targets at a safe distance in order to gather intelligence. However, signal processing is needed in order to extract the information from the data acquired by the system. This project focuses on the analysis of different signal processing methods. The Wiener filter and the Richardson-Lucy algorithm are used to deconvolve the data acquired by the photon counting system. In order to find the positions of potential targets different approaches of non-linear least squares methods are tested, as well as a more unconventional method called ESPRIT. The methods are evaluated based on their ability to resolve two targets separated by some known distance and the accuracy with which they calculate the position of a single target, as well as their robustness to noise and their computational burden. Results show that fitting a curve made of a linear combination of asymmetric super-Gaussians to the data by a method of non-linear least squares manages to accurately resolve targets separated by 1.75 cm, which is the best result of all the methods tested. The accuracy for finding the position of a single target is similar between the methods but ESPRIT has a much faster computation time.

Page generated in 0.0299 seconds