• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Analysis of Beams Using Least-Squares Finite Element Models Based on the Euler-Bernoulli and Timoshenko Beam Theories

Raut, Ameeta A. 2009 December 1900 (has links)
The conventional finite element models (FEM) of problems in structural mechanics are based on the principles of virtual work and the total potential energy. In these models, the secondary variables, such as the bending moment and shear force, are post-computed and do not yield good accuracy. In addition, in the case of the Timoshenko beam theory, the element with lower-order equal interpolation of the variables suffers from shear locking. In both Euler-Bernoulli and Timoshenko beam theories, the elements based on weak form Galerkin formulation also suffer from membrane locking when applied to geometrically nonlinear problems. In order to alleviate these types of locking, often reduced integration techniques are employed. However, this technique has other disadvantages, such as hour-glass modes or spurious rigid body modes. Hence, it is desirable to develop alternative finite element models that overcome the locking problems. Least-squares finite element models are considered to be better alternatives to the weak form Galerkin finite element models and, therefore, are in this study for investigation. The basic idea behind the least-squares finite element model is to compute the residuals due to the approximation of the variables of each equation being modeled, construct integral statement of the sum of the squares of the residuals (called least-squares functional), and minimize the integral with respect to the unknown parameters (i.e., nodal values) of the approximations. The least-squares formulation helps to retain the generalized displacements and forces (or stress resultants) as independent variables, and also allows the use of equal order interpolation functions for all variables. In this thesis comparison is made between the solution accuracy of finite element models of the Euler-Bernoulli and Timoshenko beam theories based on two different least-square models with the conventional weak form Galerkin finite element models. The developed models were applied to beam problems with different boundary conditions. The solutions obtained by the least-squares finite element models found to be very accurate for generalized displacements and forces when compared with the exact solutions, and they are more accurate in predicting the forces when compared to the conventional finite element models.
2

Analytical Study on Adhesively Bonded Joints Using Peeling Test and Symmetric Composite Models Based on Bernoulli-Euler and Timoshenko Beam Theories for Elastic and Viscoelastic Materials

Su, Ying-Yu 2010 December 1900 (has links)
Adhesively bonded joints have been investigated for several decades. In most analytical studies, the Bernoulli-Euler beam theory is employed to describe the behaviour of adherends. In the current work, three analytical models are developed for adhesively bonded joints using the Timoshenko beam theory for elastic material and a Bernoulli-Euler beam model for viscoelastic materials. One model is for the peeling test of an adhesively bonded joint, which is described using a Timoshenko beam on an elastic foundation. The adherend is considered as a Timoshenko beam, while the adhesive is taken to be a linearly elastic foundation. Three cases are considered: (1) only the normal stress is acting (mode I); (2) only the transverse shear stress is present (mode II); and (3) the normal and shear stresses co-exist (mode III) in the adhesive. The governing equations are derived in terms of the displacement and rotational angle of the adherend in each case. Analytical solutions are obtained for the displacements, rotational angle, and stresses. Numerical results are presented to show the trends of the displacements and rotational angle changing with geometrical and loading conditions. In the second model, the peeling test of an adhesively bonded joint is represented using a viscoelastic Bernoulli-Euler beam on an elastic foundation. The adherend is considered as a viscoelastic Bernoulli-Euler beam, while the adhesive is taken to be a linearly elastic foundation. Two cases under different stress history are considered: (1) only the normal stress is acting (mode I); and (2) only the transverse shear stress is present (mode II). The governing equations are derived in terms of the displacements. Analytical solutions are obtained for the displacements. The numerical results show that the deflection increases as time and temperature increase. The third model is developed using a symmetric composite adhesively bonded joint. The constitutive and kinematic relations of the adherends are derived based on the Timoshenko beam theory, and the governing equations are obtained for the normal and shear stresses in the adhesive layer. The numerical results are presented to reveal the normal and shear stresses in the adhesive.
3

Influência da inércia de rotação e da força cortante nas freqüências naturais e na resposta dinâmica de estruturas de barras / Influence of rotary inertia and shear deformation in the natural frequencies and dynamic response of framed structures

Martins, Jaime Florencio 04 December 1998 (has links)
A clássica teoria de Euler-Bernoulli para vibrações transversais de vigas elásticas é sabido não ser adequada para vibrações de altas freqüências, como é o caso de vibração de vigas curtas. Esta teoria assume que a deflexão deve-se somente ao momento fletor, uma vez que os efeitos da inércia de rotação e da força cortante são negligenciados. Lord Rayleigh complementou a teoria clássica demonstrando a contribuição da inércia de rotação e Timoshenko estendeu a teoria ao incluir os efeitos da força cortante. A equação resultante é conhecida como sendo a que caracteriza a chamada teoria de viga de Timoshenko. Usando-se a matriz de rigidez dinâmica, as freqüências naturais e a resposta dinâmica de estruturas de barras são determinadas e comparadas de acordo com resultados de quatro modelos de vibração. São estudados o problema de vibração flexional de vigas, pórticos e grelhas, bem como o problema de fundação elástica segundo o modelo de Winkler e também a versão mais avançada que é o modelo de Pasternak. / Classical Euler-Bernoulli theory for transverse vibrations of elastic beams is known to be inadequate to consider high frequency modes which occur for short beams, for example. This theory is derived under the assumption that the deflection is only due to bending. The effects of rotary inertia and shear deformation are ignored. Lord Rayleigh improved the classical theory by considering the effect of rotary inertia. Timoshenko extended the theory to include the effects of shear deformation. The resulting equation is known as Timoshenko beam theory. The natural frequencies and dynamic reponse of framed structures are determined by using the dynamic stiffness matrix and compered according to these theories. The flexional vibration problems of beams, plane frames and grids are analysed, as well problems of elastic foundation according the well known Winkler model and also the more general Pasternak model.
4

Influência da inércia de rotação e da força cortante nas freqüências naturais e na resposta dinâmica de estruturas de barras / Influence of rotary inertia and shear deformation in the natural frequencies and dynamic response of framed structures

Jaime Florencio Martins 04 December 1998 (has links)
A clássica teoria de Euler-Bernoulli para vibrações transversais de vigas elásticas é sabido não ser adequada para vibrações de altas freqüências, como é o caso de vibração de vigas curtas. Esta teoria assume que a deflexão deve-se somente ao momento fletor, uma vez que os efeitos da inércia de rotação e da força cortante são negligenciados. Lord Rayleigh complementou a teoria clássica demonstrando a contribuição da inércia de rotação e Timoshenko estendeu a teoria ao incluir os efeitos da força cortante. A equação resultante é conhecida como sendo a que caracteriza a chamada teoria de viga de Timoshenko. Usando-se a matriz de rigidez dinâmica, as freqüências naturais e a resposta dinâmica de estruturas de barras são determinadas e comparadas de acordo com resultados de quatro modelos de vibração. São estudados o problema de vibração flexional de vigas, pórticos e grelhas, bem como o problema de fundação elástica segundo o modelo de Winkler e também a versão mais avançada que é o modelo de Pasternak. / Classical Euler-Bernoulli theory for transverse vibrations of elastic beams is known to be inadequate to consider high frequency modes which occur for short beams, for example. This theory is derived under the assumption that the deflection is only due to bending. The effects of rotary inertia and shear deformation are ignored. Lord Rayleigh improved the classical theory by considering the effect of rotary inertia. Timoshenko extended the theory to include the effects of shear deformation. The resulting equation is known as Timoshenko beam theory. The natural frequencies and dynamic reponse of framed structures are determined by using the dynamic stiffness matrix and compered according to these theories. The flexional vibration problems of beams, plane frames and grids are analysed, as well problems of elastic foundation according the well known Winkler model and also the more general Pasternak model.
5

Modification of Aeroelastic Model for Vertical Axes Wind Turbines

Rastegar, Damoon January 2013 (has links)
In wind turbines, flow pressure variations on the air-structure interface cause aerodynamic forces. Consequently the structure deforms and starts to move. The interaction between aerodynamic forces and structural deformations mainly concerns aeroelasticity. Since these two are coupled, they have to be considered simultaneously in cases which the deformations are not negligible in comparison to the other geometric dimensions. The purpose of this work is to improve the simulation model of a vertical axis wind turbine by modifying the structural model from undamped Euler-Bernoulli beam theory with lumped mass matrix to the more advanced Timoshenko beam theory with consistent mass matrix plus an additional damping term. The bending of the beam is then unified with longitudinal and torsional deformations based on a fixed shape cross-section assumption and the Saint-Venant torsion theory. The whole work has been carried out by implementing the finite element method using MATLAB code and implanting it in a previously developed package as a complement. Finally the results have been verified by qualitative comparisons with alternative simulations.
6

Análisis de vibración libre de vigas laminadas de materiales compuestos utilizando el método de elementos finitos / Free Vibration Analysis of Laminated Beams of Composite Materials Using the Finite Elements Method

Balarezo Salgado, José Illarick, Corilla Arroyo, Edgard Cristian 08 June 2021 (has links)
Se presenta un modelo de elementos finitos que describe el comportamiento de vibración de libre de vigas compuestas laminadas. Se desarrolla el modelo utilizando el principio de Hamilton y la teoría de vigas Timoshenko que incluye deformaciones por corte. Se asume interpolaciones de alto orden para la aproximación de las variables fundamentales. Los laminados compuestos son ortotrópicos con fibras orientadas en diferentes direcciones. Se implementa un programa para materiales compuestos laminado en MATLAB. Se comparan resultados con otros obtenidos en la literatura para validar el modelo. Se realiza un estudio de convergencia y paramétrico con un mismo número de lámina y diferentes direcciones. Se verifica que la formulación que es bastante precisa con resultados satisfactorios en la investigación. / In this work, is presented a finite element model that describes the free vibration behavior of laminated composite beams. The model is developed by the Hamilton principle and the Timoshenko theory that includes shear deformations. Composite laminates are assumed to be orthotropic with fibers oriented in different directions, such as Angle Ply and Cross Ply cases. This investigation works out on a MAPLE program for laminated composites materials that will be completed all in MATLAB program. In order to validate the model, the results are compared with different literatures, also verify the formulation that is quite accurate and obtain quite satisfactory results in the investigation. High order interpolations are assumed to approximate fundamental variables. A convergence study and parametric study will be carried out with the same number of laminas in different directions. / Tesis
7

Výpočtové modelování dynamiky pístního kroužku / Computational Modelling of Piston Ring Dynamics

Dlugoš, Jozef January 2014 (has links)
Piston rings are installed in the piston and cylinder wall, which does not have a perfect round shape due to machining tolerances or external loads e.g. head bolts tightening. If the ring cannot follow these deformations, a localized lack of contact will occur and consequently an increase in the engine blow-by and lubricant oil consumption. Current 2D computational methods can not implement such effects – more complex model is necessary. The presented master’s thesis is focused on the developement of a flexible 3D piston ring model able to capture local deformations. It is based on the Timoshenko beam theory in cooperation with MBS software Adams. Model is then compared with FEM using software ANSYS. The validated piston ring model is assembled into the piston/cylinder liner and very basic simulations are run. Finally, future improvements are suggested.
8

Static and dynamic analysis of multi-cracked beams with local and non-local elasticity

Dona, Marco January 2014 (has links)
The thesis presents a novel computational method for analysing the static and dynamic behaviour of a multi-damaged beam using local and non-local elasticity theories. Most of the lumped damage beam models proposed to date are based on slender beam theory in classical (local) elasticity and are limited by inaccuracies caused by the implicit assumption of the Euler-Bernoulli beam model and by the spring model itself, which simplifies the real beam behaviour around the crack. In addition, size effects and material heterogeneity cannot be taken into account using the classical elasticity theory due to the absence of any microstructural parameter. The proposed work is based on the inhomogeneous Euler-Bernoulli beam theory in which a Dirac's delta function is added to the bending flexibility at the position of each crack: that is, the severer the damage, the larger is the resulting impulsive term. The crack is assumed to be always open, resulting in a linear system (i.e. nonlinear phenomena associated with breathing cracks are not considered). In order to provide an accurate representation of the structure's behaviour, a new multi-cracked beam element including shear effects and rotatory inertia is developed using the flexibility approach for the concentrated damage. The resulting stiffness matrix and load vector terms are evaluated by the unit-displacement method, employing the closed-form solutions for the multi-cracked beam problem. The same deformed shapes are used to derive the consistent mass matrix, also including the rotatory inertia terms. The two-node multi-damaged beam model has been validated through comparison of the results of static and dynamic analyses for two numerical examples against those provided by a commercial finite element code. The proposed model is shown to improve the computational efficiency as well as the accuracy, thanks to the inclusion of both shear deformations and rotatory inertia. The inaccuracy of the spring model, where for example for a rotational spring a finite jump appears on the rotations' profile, has been tackled by the enrichment of the elastic constitutive law with higher order stress and strain gradients. In particular, a new phenomenological approach based upon a convenient form of non-local elasticity beam theory has been presented. This hybrid non-local beam model is able to take into account the distortion on the stress/strain field around the crack as well as to include the microstructure of the material, without introducing any additional crack related parameters. The Laplace's transform method applied to the differential equation of the problem allowed deriving the static closed-form solution for the multi-cracked Euler-Bernoulli beams with hybrid non-local elasticity. The dynamic analysis has been performed using a new computational meshless method, where the equation of motions are discretised by a Galerkin-type approximation, with convenient shape functions able to ensure the same grade of approximation as the beam element for the classical elasticity. The importance of the inclusion of microstructural parameters is addressed and their effects are quantified also in comparison with those obtained using the classical elasticity theory.
9

Damage modeling and damage detection for structures using a perturbation method

Dixit, Akash 06 January 2012 (has links)
This thesis is about using structural-dynamics based methods to address the existing challenges in the field of Structural Health Monitoring (SHM). Particularly, new structural-dynamics based methods are presented, to model areas of damage, to do damage diagnosis and to estimate and predict the sensitivity of structural vibration properties like natural frequencies to the presence of damage. Towards these objectives, a general analytical procedure, which yields nth-order expressions governing mode shapes and natural frequencies and for damaged elastic structures such as rods, beams, plates and shells of any shape is presented. Features of the procedure include the following: 1. Rather than modeling the damage as a fictitious elastic element or localized or global change in constitutive properties, it is modeled in a mathematically rigorous manner as a geometric discontinuity. 2. The inertia effect (kinetic energy), which, unlike the stiffness effect (strain energy), of the damage has been neglected by researchers, is included in it. 3. The framework is generic and is applicable to wide variety of engineering structures of different shapes with arbitrary boundary conditions which constitute self adjoint systems and also to a wide variety of damage profiles and even multiple areas of damage. To illustrate the ability of the procedure to effectively model the damage, it is applied to beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff's theory, supported on different types of boundary conditions. Analytical results are compared with experiments using piezoelectric actuators and non-contact Laser-Doppler Vibrometer sensors. Next, the step of damage diagnosis is approached. Damage diagnosis is done using two methodologies. One, the modes and natural frequencies that are determined are used to formulate analytical expressions for a strain energy based damage index. Two, a new damage detection parameter are identified. Assuming the damaged structure to be a linear system, the response is expressed as the summation of the responses of the corresponding undamaged structure and the response (negative response) of the damage alone. If the second part of the response is isolated, it forms what can be regarded as the damage signature. The damage signature gives a clear indication of the damage. In this thesis, the existence of the damage signature is investigated when the damaged structure is excited at one of its natural frequencies and therefore it is called ``partial mode contribution". The second damage detection method is based on this new physical parameter as determined using the partial mode contribution. The physical reasoning is verified analytically, thereupon it is verified using finite element models and experiments. The limits of damage size that can be determined using the method are also investigated. There is no requirement of having a baseline data with this damage detection method. Since the partial mode contribution is a local parameter, it is thus very sensitive to the presence of damage. The parameter is also shown to be not affected by noise in the detection ambience.
10

Nonlinear Analysis of Conventional and Microstructure Dependent Functionally Graded Beams under Thermo-mechanical Loads

Arbind, Archana 2012 August 1900 (has links)
Nonlinear finite element models of functionally graded beams with power-law variation of material, accounting for the von-Karman geometric nonlinearity and temperature dependent material properties as well as microstructure dependent length scale have been developed using the Euler-Bernoulli as well as the first-order and third- order beam theories. To capture the size effect, a modified couple stress theory with one length scale parameter is used. Such theories play crucial role in predicting accurate deflections of micro- and nano-beam structures. A general third order beam theory for microstructure dependent beam has been developed for functionally graded beams for the first time using a modified couple stress theory with the von Karman nonlinear strain. Finite element models of the three beam theories have been developed. The thermo-mechanical coupling as well as the bending-stretching coupling play significant role in the deflection response. Numerical results are presented to show the effect of nonlinearity, power-law index, microstructural length scale, and boundary conditions on the bending response of beams under thermo-mechanical loads. In general, the effect of microstructural parameter is to stiffen the beam, while shear deformation has the effect of modeling more realistically as a flexible beam.

Page generated in 0.041 seconds