Spelling suggestions: "subject:"[een] TRAJECTORY"" "subject:"[enn] TRAJECTORY""
221 |
Detection, location, and trajectory tracing of moving objects in the real world two-dimensional imagesReza, Hasnain January 1988 (has links)
No description available.
|
222 |
Trajectories of Headache Disability Treatment Response: Psychosocial and Clinical CorrelatesLewis, Kristin N. January 2009 (has links)
No description available.
|
223 |
A Cognition-Based Analysis of Undergraduate Students' Reasoning about the Enumeration of PermutationsAntonides, Joseph E. 01 September 2022 (has links)
No description available.
|
224 |
Optimal symmetric flight with an intermediate vehicle modelMenon, P. K. A. January 1983 (has links)
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs as previously studied.
The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient maneuvers. A family of, climb-range paths appears for thrust exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
Minimizing paths of long duration follow a certain corridor in the V-h chart. The features of the family sharpen for the special case of thrust and drag independent of altitude, and considerable analytical attention is accorded to this for the insight it provides to the more general model.
The problem of "steepest climb" is found to be ill-posed with the vehicle model under consideration, straight-vertically-upward maneuver sequences being furnished by a family of paths alternating between upward and downward vertical flight and including a limiting "chattering" member. / Ph. D.
|
225 |
Feedback Control and Nonlinear Controllability of Nonholonomic SystemsWadoo, Sabiha Amin 17 January 2003 (has links)
In this thesis we study the methods for motion planning for nonholonomic systems. These systems are characterized by nonholonomic constraints on their generalized velocities. The motion planning problem with constraints on the velocities is transformed into a control problem having fewer control inputs than the degrees of freedom. The main focus of the thesis is on the study of motion planning and design of the feedback control laws for an autonomous underwater vehicle: a nonholonomic system. The nonlinear controllability issues for the system are also studied. For the design of feedback controllers, the system is transformed into chained and power forms. The methods of transforming a nonholonomic system into these forms are discussed. The work presented in this thesis is a step towards the initial study concerning the applicability of kinematic-based control on underwater vehicles. / Master of Science
|
226 |
Pitch-Control Predictor-Corrector and Neural Network Ascent GuidanceCowling, Adam Lloyd 12 June 2009 (has links)
A pitch-control predictor-corrector ascent guidance algorithm has been developed and evaluated for a rocket-based upper stage of a two-stage-to-orbit launch vehicle. Detailed descriptions of the predictor-corrector algorithm and a neural network loop modification are given. The mission requirement is insertion into a stable 50 x 100 nmi orbit at 375,000 ft altitude, coasting toward apogee at a positive inertial flight path angle. Three degree-of-freedom trajectory analysis is performed using the Program to Optimize Simulated Trajectories (POST2). Results of Monte Carlo simulations including uncertainties in atmosphere, thrust, aerodynamics and initial state are presented and compared to trajectories optimized for maximum injected weight. / Master of Science
|
227 |
State Space Modeling and Power Flow Analysis of Modular Multilevel ConvertersLi, Chen 19 July 2016 (has links)
For the future of sustainable energy, renewable energy will need to significantly penetrate existing utility grids. While various renewable energy sources are networked with high-voltage DC grids, integration between these high-voltage DC grids and the existing AC grids is a significant technical challenge. Among the limited choices available, the modular multi-level converter (MMC) is the most prominent interface converter used between the DC and AC grids. This subject has been widely pursued in recent years. One of the important design challenges when using an MMC is to reduce the capacitor size associated with each module. Currently, a rather large capacitor bank is required to store a certain amount of line-frequency related circulating energy. Several control strategies have been introduced to reduce the capacitor voltage ripples by injecting certain harmonic current. Most of these strategies were developed using trial and error and there is a lack of a systematic means to address this issue. Most recently, Yadong Lyu has proposed to control the modulation index in order to reduce capacitor ripples. The total elimination of the unwanted circulating power associated with both the fundamental line frequency and the second-order harmonic was demonstrated, and this resulted in a dramatic reduction in capacitor size. To gain a better understanding of the intricate operation of the MMC, this thesis proposes a state-space analysis technique in the present paper. Combining the power flow analysis with the state trajectory portrayed on a set of two-dimensional state plans, it clearly delineates the desired power transfer from the unwanted circulating energy, thus leading to an ultimate reduction in the circulation energy and therefore the required capacitor volume. / Master of Science
|
228 |
Microcontroller (MCU) Based Simplified Optimal Trajectory Control (SOTC) for High-Frequency LLC Resonant ConvertersFei, Chao 01 July 2015 (has links)
The LLC resonant converter has been widely used as a DC-DC converter due to its high efficiency, high power density and hold-up capability in power supplies for communication systems, computers and consumer electronics. Use of the high-frequency LLC converter has also been increasing in recent years due to its high power density and integrated magnetics, which reduce the total cost. With the fast development of wideband gap devices and novel magnetic materials, the trend of pushing switching frequency higher continues.
However, the control characteristics of the LLC resonant converter are much more complex than that of the PWM converter due to the dynamics of the resonant tank. This paper employs state-trajectory analysis to describe and analyze the behavior of the resonant tank. Control methods based on state-trajectory analysis were used to solve the challenges in the control of the LLC resonant converter, including unpredictable dynamics, burst mode for light-load efficiency, soft start-up and short circuit protection.
Additionally, digital controllers are gradually taking the place of analog controllers in the control of the LLC resonant converter due to the advantages of the digital controllers over the analog controllers, such as their ability to be flexible and re-configurable, capable of non-linear control, and able to communicate with other controllers. Among the digital controllers, cost-effective microcontrollers (MCU) are preferred for industrial applications. Because of the advantages of the state-trajectory control and the industrial preference in the cost-effective digital controllers, it would be of great benefit to apply state-trajectory control to high-frequency LLC converters with cost-effective digital controllers.
This thesis investigates the impact of digital delay on state-trajectory control. Simplified Optimal Trajectory Control (SOTC) for LLC converters is further simplified so that SOTC can be achieved with cost-effective digital controllers. Furthermore, the limitations caused by digital controller are explained in detail, and methods are proposed to apply the SOTC to high frequency LLC converter is proposed. A detailed analysis of fast load transient response, soft start-up, burst mode for light-load efficiency and synchronous rectification (SR) driving is provided.
Multi-step SOTC for fast load transient response is proposed to apply cost-effective digital controllers to high-frequency LLC converters; SOTC for soft start-up with only sensing Vo is proposed to minimized the impact of digital delay on state-trajectory control; SOTC for burst mode with multi-step is proposed to eliminate the limitation of minimum off-time caused by digital controllers in constant burst-on time control; a generalized adaptive SR driving method using the ripple counter concept is proposed to significantly reduce controller resource utilization for the SR control of high-frequency LLC converters.
The whole control system is demonstrated on a 500kHz 1kW 400V/12V LLC converter with a 60MHz MCU, which integrates all the proposed control methods. / Master of Science
|
229 |
Sources and Transport of Black Carbon at the United States-Mexico Border near San Diego-TijuanaShores, Christopher 08 June 2011 (has links)
At international border areas that suffer from poor quality, assessment of pollutant sources and transport across the border is important for designing effective air quality management strategies. As part of the Cal-Mex 2010 field campaign at the US-Mexico border in San Diego and Tijuana, we measured black carbon (BC) concentrations at three locations in Mexico and one in the United States. The measurements were intended to support the following objectives: to characterize the spatial and temporal variability in BC concentrations and emissions in the border region, to identify potential source areas of BC emissions, and to characterize the cross-border transport of BC and assess its impact on local and regional air quality. BC concentrations at Parque Morelos, the campaign's supersite, averaged 2.1 ?g m?? and reached a maximum value of 55.9 ?g m??. This average value is comparable to levels in large American cities like Los Angeles and similarly sized Mexican cities like Mexicali. The maximum value occurred near midnight, and similar incidents were observed on nearly half of the overnight monitoring periods. BC and carbon monoxide (CO) were strongly correlated at the Mexican sites. The BC/CO ratio was ~3 times higher in Tijuana than in Mexico City, suggesting that gasoline-powered vehicles in Tijuana emit more BC than is typical or that diesel vehicles comprise a relatively high proportion of the vehicle fleet. Tijuana's emissions of BC are estimated to be 380-1470 metric tons yr??. BC measurements were used in conjunction with modeled wind fields to simulate forward and backward particle trajectories. Generally, BC in Tijuana appears to originate locally, as backward simulations showed transport from the US into Mexico at only one site. The majority of the trajectory analyses indicate that there is often transport from Tijuana into the US, crossing the border in a northeasterly direction to the east of San Diego-Tijuana and sometimes as far east as Imperial County at the eastern edge of California. These results suggest that any air quality management strategies considering BC should account for contributions from the border region, as BC is chemically inert in the atmosphere and can travel up to thousands of kilometers. / Master of Science
|
230 |
Singular-perturbation analysis of climb-cruise-dash optimizationShankar, Uday J. 15 November 2013 (has links)
The method of singular-perturbation analysis is applied to the determination of range-fuel-time optimal aircraft trajectories.
The problem is shown to break down into three sub-problems which are studied separately. In particular, the inner layer containing the altitude path-angle dynamics is analyzed in detail. The outer solutions are discussed in an earlier work.
As a step forward in solving the ensuing nonlinear two-point boundary-value problem, linearization of the equations is suggested. Conditions for the stability of the linearized boundary-layer equations are discussed. Also, the question of parameter selection to fit the solution to the split boundary conditions is resolved. Generation of feedback laws for the angle-of-attack from the linear analysis is discussed.
Finally, the techniques discussed are applied to a numerical example of a missile. The linearized feedback solution is compared to the exact solution obtained using a multiple shooting method. / Master of Science
|
Page generated in 0.0322 seconds