• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 226
  • 10
  • 10
  • 9
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 307
  • 307
  • 140
  • 115
  • 112
  • 95
  • 69
  • 65
  • 59
  • 55
  • 54
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Transfer Learning for Medication Adherence Prediction from Social Forums Self-Reported Data

Kyle Haas (5931056) 17 January 2019 (has links)
<div> <div> <div> <p>Medication non-adherence and non-compliance left unaddressed can compound into severe medical problems for patients. Identifying patients that are likely to become non-adherent can help reduce these problems. Despite these benefits, monitoring adherence at scale is cost-prohibitive. Social forums offer an easily accessible, affordable, and timely alternative to the traditional methods based on claims data. This study investigates the potential of medication adherence prediction based on social forum data for diabetes and fibromyalgia therapies by using transfer learning from the Medical Expenditure Panel Survey (MEPS). </p><p><br></p> <p>Predictive adherence models are developed by using both survey and social forums data and different random forest (RF) techniques. The first of these implementations uses binned inputs from k-means clustering. The second technique is based on ternary trees instead of the widely used binary decision trees. These techniques are able to handle missing data, a prevalent characteristic of social forums data. </p><p><br></p> <p>The results of this study show that transfer learning between survey models and social forum models is possible. Using MEPS survey data and the techniques listed above to derive RF models, less than 5% difference in accuracy was observed between the MEPS test dataset and the social forum test dataset. Along with these RF techniques, another RF implementation with imputed means for the missing values was developed and shown to predict adherence for social forum patients with an accuracy >70%. </p> </div> </div> <div> <div> <p><br></p> </div> </div> </div> <div> <div> <div> <p>This thesis shows that a model trained with verified survey data can be used to complement traditional medical adherence models by predicting adherence from unverified, self-reported data in a dynamic and timely manner. Furthermore, this model provides a method for discovering objective insights from subjective social reports. Additional investigation is needed to improve the prediction accuracy of the proposed model and to assess biases that may be inherent to self-reported adherence measures in social health networks. </p> </div> </div> </div>
132

Using Convolutional Neural Networks to Detect People Around Wells in South Sudan

Kastberg, Maria January 2019 (has links)
The organization International Aid Services (IAS) provides people in East Africawith clean water through well drilling. The wells are located in surroundingsfar away for the investors to inspect and therefore IAS wishes to be able to monitortheir wells to get a better overview if different types of improvements needto be made. To see the load on different water sources at different times of theday and during the year, and to know how many people that are visiting thewells, is of particular interest. In this paper, a method is proposed for countingpeople around the wells. The goal is to choose a suitable method for detectinghumans in images and evaluate how it performs. The area of counting humansin images is not a new topic, though it needs to be taken into account that thesituation implies some restrictions. A Raspberry Pi with an associated camerais used, which is a small embedded system that cannot handle large and complexsoftware. There is also a limited amount of data in the project. The methodproposed in this project uses a pre-trained convolutional neural network basedobject detector called the Single Shot Detector, which is adapted to suit smallerdevices and applications. The pre-trained network that it is based on is calledMobileNet, a network that is developed to be used on smaller systems. To see howgood the chosen detector performs it will be compared with some other models.Among them a detector based on the Inception network, a significantly larger networkthan the MobileNet. The base network is modified by transfer learning.Results shows that a fine-tuned and modified network can achieve better result,from a F1-score of 0.49 for a non-fine-tuned model to 0.66 for the fine-tuned one.
133

Multi-Label Text Classification with Transfer Learning for Policy Documents : The Case of the Sustainable Development Goals

Rodríguez Medina, Samuel January 2019 (has links)
We created and analyzed a text classification dataset from freely-available web documents from the United Nation's Sustainable Development Goals. We then used it to train and compare different multi-label text classifiers with the aim of exploring the alternatives for methods that facilitate the search of information of this type of documents. We explored the effectiveness of deep learning and transfer learning in text classification by fine-tuning different pre-trained language representations — Word2Vec, GloVe, ELMo, ULMFiT and BERT. We also compared these approaches against a baseline of more traditional algorithms without using transfer learning. More specifically, we used multinomial Naive Bayes, logistic regression, k-nearest neighbors and Support Vector Machines. We then analyzed the results of our experiments quantitatively and qualitatively. The best results in terms of micro-averaged F1 scores and AUROC are obtained by BERT. However, it is also interesting that the second best classifier in terms of micro-averaged F1 scores is the Support Vector Machines, closely followed by the logistic regression classifier, which both have the advantage of being less computationally expensive than BERT. The results also show a close relation between our dataset size and the effectiveness of the classifiers.
134

Scaling Up Reinforcement Learning without Sacrificing Optimality by Constraining Exploration

Mann, Timothy 1984- 14 March 2013 (has links)
The purpose of this dissertation is to understand how algorithms can efficiently learn to solve new tasks based on previous experience, instead of being explicitly programmed with a solution for each task that we want it to solve. Here a task is a series of decisions, such as a robot vacuum deciding which room to clean next or an intelligent car deciding to stop at a traffic light. In such a case, state-of-the-art learning algorithms are difficult to employ in practice because they often make thou- sands of mistakes before reliably solving a task. However, humans learn solutions to novel tasks, often making fewer mistakes, which suggests that efficient learning algorithms may exist. One advantage that humans have over state- of-the-art learning algorithms is that, while learning a new task, humans can apply knowledge gained from previously solved tasks. The central hypothesis investigated by this dissertation is that learning algorithms can solve new tasks more efficiently when they take into consideration knowledge learned from solving previous tasks. Al- though this hypothesis may appear to be obviously true, what knowledge to use and how to apply that knowledge to new tasks is a challenging, open research problem. I investigate this hypothesis in three ways. First, I developed a new learning algorithm that is able to use prior knowledge to constrain the exploration space. Second, I extended a powerful theoretical framework in machine learning, called Probably Approximately Correct, so that I can formally compare the efficiency of algorithms that solve only a single task to algorithms that consider knowledge from previously solved tasks. With this framework, I found sufficient conditions for using knowledge from previous tasks to improve efficiency of learning to solve new tasks and also identified conditions where transferring knowledge may impede learning. I present situations where transfer learning can be used to intelligently constrain the exploration space so that optimality loss can be minimized. Finally, I tested the efficiency of my algorithms in various experimental domains. These theoretical and empirical results provide support for my central hypothesis. The theory and experiments of this dissertation provide a deeper understanding of what makes a learning algorithm efficient so that it can be widely used in practice. Finally, these results also contribute the general goal of creating autonomous machines that can be reliably employed to solve complex tasks.
135

Assessing Nurse and Medical Assistant Perceived Needs Prior to Implementation of Expanded Web-based Training in Physician Clinics

Hopkins, Pamela Jean Clinton 2010 May 1900 (has links)
The purpose of this study was to assess nurse and medical assistant perceived needs prior to implementing an expended web-based training (WBT) program in physician clinics. This case study was conducted with a mixed-data approach using quantitative and descriptive survey data collection. A total of 239 nurses and medical assistants within the Trinity Mother Frances Hospitals and Clinics dispersed throughout east, north east and north central Texas participated. The participants shared knowledge and behaviors common to the culture of the organization. When new and existing clinical staff traveled to the distant primary campus for training, the operations of the clinic practice was disrupted. Employees are not hired in groups comprising convenient training class sizes, and mandatory training often cannot wait until a class is of a cost effective size. The data were collected using a 50-item survey evaluating computer access, computer usage, computer knowledge (satisfaction, frustration, and motivation to transfer learning), and WBT preference (employee's support and employee's perception of supervisor's support). Quantitative data were collected in the form of a dichotomous yes or no and ordinal data from two Likert type scales. Descriptive survey data was collected using open-ended questions emphasizing perceived strengths, weaknesses, opportunities and threats (SWOT) of WBT. Demographic data were collected to facilitate comparison of perspectives based on demographic information gathered. To support reliability and validity of the Clinic WBT Needs Assessment (CWBTNA), exploratory factor analysis, Cronbach's coefficient alpha, and correlations were utilized to validate the survey instrument. Chi-squares, ANOVAs, and t-tests were conducted. Following the Bonferroni control for Type I error rate (a), four t-test, two chi-squares, and three ANOVAs demonstrated significance. Descriptive responses generated from descriptive survey items were transcribed into an Excel spreadsheet which allowed coding and sorting. Themes consistent with order sets of the quantitative survey emerged. Among additional findings, statistical data demonstrated that staff perceived they transferred learning into the work place best when they perceived greater supervisor support. All findings are detailed in the document.
136

Communication and alignment of grounded symbolic knowledge among heterogeneous robots

Kira, Zsolt 05 April 2010 (has links)
Experience forms the basis of learning. It is crucial in the development of human intelligence, and more broadly allows an agent to discover and learn about the world around it. Although experience is fundamental to learning, it is costly and time-consuming to obtain. In order to speed this process up, humans in particular have developed communication abilities so that ideas and knowledge can be shared without requiring first-hand experience. Consider the same need for knowledge sharing among robots. Based on the recent growth of the field, it is reasonable to assume that in the near future there will be a collection of robots learning to perform tasks and gaining their own experiences in the world. In order to speed this learning up, it would be beneficial for the various robots to share their knowledge with each other. In most cases, however, the communication of knowledge among humans relies on the existence of similar sensory and motor capabilities. Robots, on the other hand, widely vary in perceptual and motor apparatus, ranging from simple light sensors to sophisticated laser and vision sensing. This dissertation defines the problem of how heterogeneous robots with widely different capabilities can share experiences gained in the world in order to speed up learning. The work focus specifically on differences in sensing and perception, which can be used both for perceptual categorization tasks as well as determining actions based on environmental features. Motivating the problem, experiments first demonstrate that heterogeneity does indeed pose a problem during the transfer of object models from one robot to another. This is true even when using state of the art object recognition algorithms that use SIFT features, designed to be unique and reproducible. It is then shown that the abstraction of raw sensory data into intermediate categories for multiple object features (such as color, texture, shape, etc.), represented as Gaussian Mixture Models, can alleviate some of these issues and facilitate effective knowledge transfer. Object representation, heterogeneity, and knowledge transfer is framed within Gärdenfors' conceptual spaces, or geometric spaces that utilize similarity measures as the basis of categorization. This representation is used to model object properties (e.g. color or texture) and concepts (object categories and specific objects). A framework is then proposed to allow heterogeneous robots to build models of their differences with respect to the intermediate representation using joint interaction in the environment. Confusion matrices are used to map property pairs between two heterogeneous robots, and an information-theoretic metric is proposed to model information loss when going from one robot's representation to another. We demonstrate that these metrics allow for cognizant failure, where the robots can ascertain if concepts can or cannot be shared, given their respective capabilities. After this period of joint interaction, the learned models are used to facilitate communication and knowledge transfer in a manner that is sensitive to the robots' differences. It is shown that heterogeneous robots are able to learn accurate models of their similarities and difference, and to use these models to transfer learned concepts from one robot to another in order to bootstrap the learning of the receiving robot. In addition, several types of communication tasks are used in the experiments. For example, how can a robot communicate a distinguishing property of an object to help another robot differentiate it from its surroundings? Throughout the dissertation, the claims will be validated through both simulation and real-robot experiments.
137

Adaptive trading agent strategies using market experience

Pardoe, David Merrill 22 June 2011 (has links)
Along with the growth of electronic commerce has come an interest in developing autonomous trading agents. Often, such agents must interact directly with other market participants, and so the behavior of these participants must be taken into account when designing agent strategies. One common approach is to build a model of the market, but this approach requires the use of historical market data, which may not always be available. This dissertation addresses such a case: that of an agent entering a new market in which it has no previous experience. While the agent could adapt by learning about the behavior of other market participants, it would need to do so in an online fashion. The agent would not necessarily have to learn from scratch, however. If the agent had previous experience in similar markets, it could use this experience to tailor its learning approach to its particular situation. This dissertation explores methods that a trading agent could use to take advantage of previous market experience when adapting to a new market. Two distinct learning settings are considered. In the first, an agent acting as an auctioneer must adapt the parameters of an auction mechanism in response to bidder behavior, and a reinforcement learning approach is used. The second setting concerns agents that must adapt to the behavior of competitors in two scenarios from the Trading Agent Competition: supply chain management and ad auctions. Here, the agents use supervised learning to model the market. In both settings, methods of adaptation can be divided into four general categories: i) identifying the most similar previously encountered market, ii) learning from the current market only, iii) learning from the current market but using previous experience to tune the learning algorithm, and iv) learning from both the current and previous markets. The first contribution of this dissertation is the introduction and experimental validation of a number of novel algorithms for market adaptation fitting these categories. The second contribution is an exploration of the degree to which the quantity and nature of market experience impact the relative performance of methods from these categories. / text
138

Modélisation multi-échelles de la morphologie urbaine à partir de données carroyées de population et de bâti / Multiscale modelling of urban morphology using gridded data

Baro, Johanna 25 March 2015 (has links)
La question des liens entre forme urbaine et transport se trouve depuis une vingtaine d'années au cœur des réflexions sur la mise en place de politiques d'aménagement durable. L'essor de la diffusion de données sur grille régulière constitue dans ce cadre une nouvelle perspective pour la modélisation de structures urbaines à partir de mesures de densités affranchies de toutes les contraintes des maillages administratifs. A partir de données de densité de population et de surface bâtie disponibles à l'échelle de la France sur des grilles à mailles de 200 mètres de côté, nous proposons deux types de classifications adaptées à l'étude des pratiques de déplacement et du développement urbain : des classifications des tissus urbains et des classifications des morphotypes de développement urbain. La construction de telles images classées se base sur une démarche de modélisation théorique et expérimentale soulevant de forts enjeux méthodologiques quant à la classification d'espaces urbains statistiquement variés. Pour nous adapter au traitement exhaustif de ces espaces, nous avons proposé une méthode de classification des tissus urbains par transfert d'apprentissage supervisé. Cette méthode utilise le formalisme des champs de Markov cachés pour prendre en compte les dépendances présentes dans ces données spatialisées. Les classifications en morphotypes sont ensuite obtenus par un enrichissement de ces premières images classées, formalisé à partir de modèles chorématiques et mis à œuvre par raisonnement spatial qualitatif. L'analyse de ces images classées par des méthodes de raisonnement spatial quantitatif et d'analyses factorielles nous a permis de révéler la diversité morphologique de 50 aires urbaines françaises. Elle nous a permis de mettre en avant la pertinence de ces classifications pour caractériser les espaces urbains en accord avec différents enjeux d'aménagement relatifs à la densité ou à la multipolarité / Since a couple of decades the relationships between urban form and travel patterns are central to reflection on sustainable urban planning and transport policy. The increasing distribution of regular grid data is in this context a new perspective for modeling urban structures from measurements of density freed from the constraints of administrative division. Population density data are now available on 200 meters grids covering France. We complete these data with built area densities in order to propose two types of classified images adapted to the study of travel patterns and urban development: classifications of urban fabrics and classifications of morphotypes of urban development. The construction of such classified images is based on theoretical and experimental which raise methodological issues regarding the classification of a statistically various urban spaces. To proceed exhaustively those spaces, we proposed a per-pixel classification method of urban fabrics by supervised transfer learning. Hidden Markov random fields are used to take into account the dependencies in the spatial data. The classifications of morphotypes are then obtained by broadening the knowledge of urban fabrics. These classifications are formalized from chorematique theoretical models and implemented by qualitative spatial reasoning. The analysis of these classifications by methods of quantitative spatial reasoning and factor analysis allowed us to reveal the morphological diversity of 50 metropolitan areas. It highlights the relevance of these classifications to characterize urban areas in accordance with various development issues related to the density or multipolar development
139

Land Use and Land Cover Classification Using Deep Learning Techniques

January 2016 (has links)
abstract: Large datasets of sub-meter aerial imagery represented as orthophoto mosaics are widely available today, and these data sets may hold a great deal of untapped information. This imagery has a potential to locate several types of features; for example, forests, parking lots, airports, residential areas, or freeways in the imagery. However, the appearances of these things vary based on many things including the time that the image is captured, the sensor settings, processing done to rectify the image, and the geographical and cultural context of the region captured by the image. This thesis explores the use of deep convolutional neural networks to classify land use from very high spatial resolution (VHR), orthorectified, visible band multispectral imagery. Recent technological and commercial applications have driven the collection a massive amount of VHR images in the visible red, green, blue (RGB) spectral bands, this work explores the potential for deep learning algorithms to exploit this imagery for automatic land use/ land cover (LULC) classification. The benefits of automatic visible band VHR LULC classifications may include applications such as automatic change detection or mapping. Recent work has shown the potential of Deep Learning approaches for land use classification; however, this thesis improves on the state-of-the-art by applying additional dataset augmenting approaches that are well suited for geospatial data. Furthermore, the generalizability of the classifiers is tested by extensively evaluating the classifiers on unseen datasets and we present the accuracy levels of the classifier in order to show that the results actually generalize beyond the small benchmarks used in training. Deep networks have many parameters, and therefore they are often built with very large sets of labeled data. Suitably large datasets for LULC are not easy to come by, but techniques such as refinement learning allow networks trained for one task to be retrained to perform another recognition task. Contributions of this thesis include demonstrating that deep networks trained for image recognition in one task (ImageNet) can be efficiently transferred to remote sensing applications and perform as well or better than manually crafted classifiers without requiring massive training data sets. This is demonstrated on the UC Merced dataset, where 96% mean accuracy is achieved using a CNN (Convolutional Neural Network) and 5-fold cross validation. These results are further tested on unrelated VHR images at the same resolution as the training set. / Dissertation/Thesis / Masters Thesis Computer Science 2016
140

Learning information retrieval functions and parameters on unlabeled collections / Apprentissage des fonctions de la recherche d'information et leurs paramètres sur des collections non-étiquetées

Goswami, Parantapa 06 October 2014 (has links)
Dans cette thèse, nous nous intéressons (a) à l'estimation des paramètres de modèles standards de Recherche d'Information (RI), et (b) à l'apprentissage de nouvelles fonctions de RI. Nous explorons d'abord plusieurs méthodes permettant, a priori, d'estimer le paramètre de collection des modèles d'information (chapitre. Jusqu'à présent, ce paramètre était fixé au nombre moyen de documents dans lesquels un mot donné apparaissait. Nous présentons ici plusieurs méthodes d'estimation de ce paramètre et montrons qu'il est possible d'améliorer les performances du système de recherche d'information lorsque ce paramètre est estimé de façon adéquate. Pour cela, nous proposons une approche basée sur l'apprentissage de transfert qui peut prédire les valeurs de paramètre de n'importe quel modèle de RI. Cette approche utilise des jugements de pertinence d'une collection de source existante pour apprendre une fonction de régression permettant de prédire les paramètres optimaux d'un modèle de RI sur une nouvelle collection cible non-étiquetée. Avec ces paramètres prédits, les modèles de RI sont non-seulement plus performants que les même modèles avec leurs paramètres par défaut mais aussi avec ceux optimisés en utilisant les jugements de pertinence de la collection cible. Nous étudions ensuite une technique de transfert permettant d'induire des pseudo-jugements de pertinence des couples de documents par rapport à une requête donnée d'une collection cible. Ces jugements de pertinence sont obtenus grâce à une grille d'information récapitulant les caractéristiques principale d'une collection. Ces pseudo-jugements de pertinence sont ensuite utilisés pour apprendre une fonction d'ordonnancement en utilisant n'importe quel algorithme d'ordonnancement existant. Dans les nombreuses expériences que nous avons menées, cette technique permet de construire une fonction d'ordonnancement plus performante que d'autres proposées dans l'état de l'art. Dans le dernier chapitre de cette thèse, nous proposons une technique exhaustive pour rechercher des fonctions de RI dans l'espace des fonctions existantes en utilisant un grammaire permettant de restreindre l'espace de recherche et en respectant les contraintes de la RI. Certaines fonctions obtenues sont plus performantes que les modèles de RI standards. / The present study focuses on (a) predicting parameters of already existing standard IR models and (b) learning new IR functions. We first explore various statistical methods to estimate the collection parameter of family of information based models (Chapter 2). This parameter determines the behavior of a term in the collection. In earlier studies, it was set to the average number of documents where the term appears, without full justification. We introduce here a fully formalized estimation method which leads to improved versions of these models over the original ones. But the method developed is applicable only to estimate the collection parameter under the information model framework. To alleviate this we propose a transfer learning approach which can predict values for any parameter for any IR model (Chapter 3). This approach uses relevance judgments on a past collection to learn a regression function which can infer parameter values for each single query on a new unlabeled target collection. The proposed method not only outperforms the standard IR models with their default parameter values, but also yields either better or at par performance with popular parameter tuning methods which use relevance judgments on target collection. We then investigate the application of transfer learning based techniques to directly transfer relevance information from a source collection to derive a "pseudo-relevance" judgment on an unlabeled target collection (Chapter 4). From this derived pseudo-relevance a ranking function is learned using any standard learning algorithm which can rank documents in the target collection. In various experiments the learned function outperformed standard IR models as well as other state-of-the-art transfer learning based algorithms. Though a ranking function learned through a learning algorithm is effective still it has a predefined form based on the learning algorithm used. We thus introduce an exhaustive discovery approach to search ranking functions from a space of simple functions (Chapter 5). Through experimentation we found that some of the discovered functions are highly competitive with respect to standard IR models.

Page generated in 0.0715 seconds