• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 10
  • 10
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 303
  • 303
  • 138
  • 115
  • 111
  • 94
  • 69
  • 65
  • 58
  • 54
  • 54
  • 51
  • 50
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Zero Shot Learning for Visual Object Recognition with Generative Models

January 2020 (has links)
abstract: Visual object recognition has achieved great success with advancements in deep learning technologies. Notably, the existing recognition models have gained human-level performance on many of the recognition tasks. However, these models are data hungry, and their performance is constrained by the amount of training data. Inspired by the human ability to recognize object categories based on textual descriptions of objects and previous visual knowledge, the research community has extensively pursued the area of zero-shot learning. In this area of research, machine vision models are trained to recognize object categories that are not observed during the training process. Zero-shot learning models leverage textual information to transfer visual knowledge from seen object categories in order to recognize unseen object categories. Generative models have recently gained popularity as they synthesize unseen visual features and convert zero-shot learning into a classical supervised learning problem. These generative models are trained using seen classes and are expected to implicitly transfer the knowledge from seen to unseen classes. However, their performance is stymied by overfitting towards seen classes, which leads to substandard performance in generalized zero-shot learning. To address this concern, this dissertation proposes a novel generative model that leverages the semantic relationship between seen and unseen categories and explicitly performs knowledge transfer from seen categories to unseen categories. Experiments were conducted on several benchmark datasets to demonstrate the efficacy of the proposed model for both zero-shot learning and generalized zero-shot learning. The dissertation also provides a unique Student-Teacher based generative model for zero-shot learning and concludes with future research directions in this area. / Dissertation/Thesis / Masters Thesis Computer Science 2020
52

Multilingual Dependency Parsing of Uralic Languages : Parsing with zero-shot transfer and cross-lingual models using geographically proximate, genealogically related, and syntactically similar transfer languages

Erenmalm, Elsa January 2020 (has links)
One way to improve dependency parsing scores for low-resource languages is to make use of existing resources from other closely related or otherwise similar languages. In this paper, we look at eleven Uralic target languages (Estonian, Finnish, Hungarian, Karelian, Livvi, Komi Zyrian, Komi Permyak, Moksha, Erzya, North Sámi, and Skolt Sámi) with treebanks of varying sizes and select transfer languages based on geographical, genealogical, and syntactic distances. We focus primarily on the performance of parser models trained on various combinations of geographically proximate and genealogically related transfer languages, in target-trained, zero-shot, and cross-lingual configurations. We find that models trained on combinations of geographically proximate and genealogically related transfer languages reach the highest LAS in most zero-shot models, while our highest-performing cross-lingual models were trained on genealogically related languages. We also find that cross-lingual models outperform zero-shot transfer models. We then select syntactically similar transfer languages for three target languages, and find a slight improvement in the case of Hungarian. We discuss the results and conclude with suggestions for possible future work.
53

Ichthyoplankton Classification Tool using Generative Adversarial Networks and Transfer Learning

Aljaafari, Nura 15 April 2018 (has links)
The study and the analysis of marine ecosystems is a significant part of the marine science research. These systems are valuable resources for fisheries, improving water quality and can even be used in drugs production. The investigation of ichthyoplankton inhabiting these ecosystems is also an important research field. Ichthyoplankton are fish in their early stages of life. In this stage, the fish have relatively similar shape and are small in size. The currently used way of identifying them is not optimal. Marine scientists typically study such organisms by sending a team that collects samples from the sea which is then taken to the lab for further investigation. These samples need to be studied by an expert and usually end needing a DNA sequencing. This method is time-consuming and requires a high level of experience. The recent advances in AI have helped to solve and automate several difficult tasks which motivated us to develop a classification tool for ichthyoplankton. We show that using machine learning techniques, such as generative adversarial networks combined with transfer learning solves such a problem with high accuracy. We show that using traditional machine learning algorithms fails to solve it. We also give a general framework for creating a classification tool when the dataset used for training is a limited dataset. We aim to build a user-friendly tool that can be used by any user for the classification task and we aim to give a guide to the researchers so that they can follow in creating a classification tool.
54

A Study on Resolution and Retrieval of Implicit Entity References in Microblogs / マイクロブログにおける暗黙的な実体参照の解決および検索に関する研究

Lu, Jun-Li 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22580号 / 情博第717号 / 新制||情||123(附属図書館) / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 吉川 正俊, 教授 黒橋 禎夫, 教授 田島 敬史, 教授 田中 克己(京都大学 名誉教授) / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
55

Deep Learning for Classification of COVID-19 Pneumonia, Bacterial Pneumonia, Viral Pneumonia and Normal Lungs on CT Images

Desai, Gargi Sharad 05 October 2021 (has links)
No description available.
56

Improve the Diagnosis on Fundus Photography with Deep Transfer Learning

Guo, Chen 21 June 2021 (has links)
No description available.
57

Domain-Aware Continual Zero-Shot Learning

Yi, Kai 29 November 2021 (has links)
We introduce Domain Aware Continual Zero-Shot Learning (DACZSL), the task of visually recognizing images of unseen categories in unseen domains sequentially. We created DACZSL on top of the DomainNet dataset by dividing it into a sequence of tasks, where classes are incrementally provided on seen domains during training and evaluation is conducted on unseen domains for both seen and unseen classes. We also proposed a novel Domain-Invariant CZSL Network (DIN), which outperforms state-of-the-art baseline models that we adapted to DACZSL setting. We adopt a structure-based approach to alleviate forgetting knowledge from previous tasks with a small per-task private network in addition to a global shared network. To encourage the private network to capture the domain and task-specific representation, we train our model with a novel adversarial knowledge disentanglement setting to make our global network task-invariant and domain-invariant over all the tasks. Our method also learns a class-wise learnable prompt to obtain better class-level text representation, which is used to represent side information to enable zero-shot prediction of future unseen classes. Our code and benchmarks are made available at https://zero-shot-learning.github.io/daczsl.
58

A Transfer Learning Approach to Object Detection Acceleration for Embedded Applications

Vance, Lauren M. 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Deep learning solutions to computer vision tasks have revolutionized many industries in recent years, but embedded systems have too many restrictions to take advantage of current state-of-the-art configurations. Typical embedded processor hardware configurations must meet very low power and memory constraints to maintain small and lightweight packaging, and the architectures of the current best deep learning models are too computationally-intensive for these hardware configurations. Current research shows that convolutional neural networks (CNNs) can be deployed with a few architectural modifications on Field-Programmable Gate Arrays (FPGAs) resulting in minimal loss of accuracy, similar or decreased processing speeds, and lower power consumption when compared to general-purpose Central Processing Units (CPUs) and Graphics Processing Units (GPUs). This research contributes further to these findings with the FPGA implementation of a YOLOv4 object detection model that was developed with the use of transfer learning. The transfer-learned model uses the weights of a model pre-trained on the MS-COCO dataset as a starting point then fine-tunes only the output layers for detection on more specific objects of five classes. The model architecture was then modified slightly for compatibility with the FPGA hardware using techniques such as weight quantization and replacing unsupported activation layer types. The model was deployed on three different hardware setups (CPU, GPU, FPGA) for inference on a test set of 100 images. It was found that the FPGA was able to achieve real-time inference speeds of 33.77 frames-per-second, a speedup of 7.74 frames-per-second when compared to GPU deployment. The model also consumed 96% less power than a GPU configuration with only approximately 4% average loss in accuracy across all 5 classes. The results are even more striking when compared to CPU deployment, with 131.7-times speedup in inference throughput. CPUs have long since been outperformed by GPUs for deep learning applications but are used in most embedded systems. These results further illustrate the advantages of FPGAs for deep learning inference on embedded systems even when transfer learning is used for an efficient end-to-end deployment process. This work advances current state-of-the-art with the implementation of a YOLOv4 object detection model developed with transfer learning for FPGA deployment.
59

Solving Arabic Math Word Problems via Deep Learning

Alghamdi, Reem A. 14 November 2021 (has links)
This thesis studies to automatically solve Arabic Math Word Problems (MWPs) by deep learning models. MWP is a text description of a mathematical problem, which should be solved by deriving a math equation and reach the answer. Due to their strong learning capacity, deep learning based models can learn from the given problem description and generate the correct math equation for solving the problem. Effective models have been developed for solving MWPs in English and Chinese. However, Arabic MWPs are rarely studied. To initiate the study in Arabic MWPs, this thesis contributes the first large-scale dataset for Arabic MWPs, which contain 6,000 samples. Each sample is composed of an Arabic MWP description and the corresponding equation to solve this MWP. Arabic MWP solvers are then built with deep learning models, and verified on this dataset for their effectiveness. In addition, a transfer learning model is built to let the high-resource Chinese MWP solver to promote the performance of the low-resource Arabic MWP solver. This work is the first to use deep learning methods to solve Arabic MWP and the first to use transfer learning to solve MWP across different languages. The solver enhanced by transfer learning has accuracy 74.15%, which is 3% higher than the baseline that does not use transfer learning. In addition, the accuracy is more than 7% higher than the baseline for templates with few samples representing them. Furthermore, The model can generate new sequences that were not seen before during the training with an accuracy of 27% (11% higher than the baseline).
60

Reducing the Manual Annotation Effort for Handwriting Recognition Using Active Transfer Learning

Burdett, Eric 23 August 2021 (has links)
Handwriting recognition systems have achieved remarkable performance over the past several years with the advent of deep neural networks. For high-quality recognition, these models require large amounts of labeled training data, which can be difficult to obtain. Various methods to reduce this effort have been proposed in the realms of active and transfer learning, but not in combination. We propose a framework for fitting new handwriting recognition models that joins active and transfer learning into a unified framework. Empirical results show the superiority of our method compared to traditional active learning, transfer learning, or standard supervised training schemes.

Page generated in 0.036 seconds