• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 10
  • 10
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 303
  • 303
  • 138
  • 115
  • 111
  • 94
  • 69
  • 65
  • 58
  • 54
  • 54
  • 51
  • 50
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Harnessing Transfer Learning and Image Analysis Techniques for Enhanced Biological Insights: Multifaceted Approaches to Diagnosis and Prognosis of Diseases

Ziyu Liu (18410397) 22 April 2024 (has links)
<p dir="ltr">Despite the remarkable advancements of machine learning (ML) technologies in biomedical research, especially in tackling complex human diseases such as cancer and Alzheimer's disease, a considerable gap persists between promising theoretical results and dependable clinical applications in diagnosis, prognosis, and therapeutic decision-making. One of the primary challenges stems from the absence of large high-quality patient datasets, which arises from the cost and human labor required for collecting such datasets and the scarcity of patient samples. Moreover, the inherent complexity of the data often leads to a feature space dimension that is large compared with the sample size, potentially causing instability during training and unreliability in inference. To address these challenges, the transfer learning (TL) approach has been embraced in biomedical ML applications to facilitate knowledge transfer across diverse and related biological contexts. Leveraging this principle, we introduce an unsupervised multi-view TL algorithm, named MVTOT [1], which enables the analysis of various biomarkers across different cancer types. Specifically, we compress high-dimensional biomarkers from different cancer types into a low-dimensional feature space via nonnegative matrix factorization and distill common information shared by various cancer types using the Wasserstein distance defined by Optimal Transport theory. We evaluate the stratification performance on three early-stage cancers from the Cancer Genome Atlas (TCGA) project. Our framework, compared with other benchmark methods, demonstrates superior accuracy in patient survival outcome stratification.</p><p dir="ltr">Additionally, while patient-level stratification has enhanced clinical decision-making, our understanding of diseases at the single-cell (SC) level remains limited, which is crucial for deciphering disease progression mechanisms, monitoring drug responses, and prioritizing drug targets. It is essential to associate each SC with patient-level clinical traits such as survival hazard, drug response, and disease subtypes. However, SC samples often lack direct labeling with these traits, and the significant statistical gap between patient and SC-level gene expressions impedes the transfer of well-annotated patient-level disease attributes to SCs. Domain adaptation (DA), a TL subfield, addresses this challenge by training a domain-invariant feature extractor for both patient and SC gene expression matrices, facilitating the successful application of ML models trained on patient-level data to SC samples. Expanding upon an established deep-learning-based DA model, DEGAS [2], we substitute their computationally ineffective maximum mean discrepancy loss with the Wasserstein distance as the metric for domain discrepancy. This substitution facilitates the embedding of both SC and patient inputs into a common latent feature space. Subsequently, employing the model trained on patient-level disease attributes, we predict SC-level survival hazard, disease status, and drug response for prostate cancer, Alzheimer's SC data, and multiple myeloma data, respectively. Our approach outperforms benchmark studies, uncovering clinically significant cell subgroups and revealing the correlation between survival hazard and drug response at the SC level.</p><p dir="ltr">Furthermore, in addition to these approaches, we acknowledge the effectiveness of TL and image analysis in stratifying patients with early and late-stage Mild Cognitive Impairment based on neuroimaging, as well as predicting survival and metastasis in melanoma based on histological images. These applications underscore the potential of employing ML methods, especially TL algorithms, in addressing biomedical issues from various angles, thereby enhancing our understanding of disease mechanisms and developing new biomarkers predicting patient outcomes.</p>
12

Extensions to Radio Frequency Fingerprinting

Andrews, Seth Dixon 05 December 2019 (has links)
Radio frequency fingerprinting, a type of physical layer identification, allows identifying wireless transmitters based on their unique hardware. Every wireless transmitter has slight manufacturing variations and differences due to the layout of components. These are manifested as differences in the signal emitted by the device. A variety of techniques have been proposed for identifying transmitters, at the physical layer, based on these differences. This has been successfully demonstrated on a large variety of transmitters and other devices. However, some situations still pose challenges: Some types of fingerprinting feature are very dependent on the modulated signal, especially features based on the frequency content of a signal. This means that changes in transmitter configuration such as bandwidth or modulation will prevent wireless fingerprinting. Such changes may occur frequently with cognitive radios, and in dynamic spectrum access networks. A method is proposed to transform features to be invariant with respect to changes in transmitter configuration. With the transformed features it is possible to re-identify devices with a high degree of certainty. Next, improving performance with limited data by identifying devices using observations crowdsourced from multiple receivers is examined. Combinations of three types of observations are defined. These are combinations of fingerprinter output, features extracted from multiple signals, and raw observations of multiple signals. Performance is demonstrated, although the best method is dependent on the feature set. Other considerations are considered, including processing power and the amount of data needed. Finally, drift in fingerprinting features caused by changes in temperature is examined. Drift results from gradual changes in the physical layer behavior of transmitters, and can have a substantial negative impact on fingerprinting. Even small changes in temperature are found to cause drift, with the oscillator as the primary source of this drift (and other variation) in the fingerprints used. Various methods are tested to compensate for these changes. It is shown that frequency based features not dependent on the carrier are unaffected by drift, but are not able to distinguish between devices. Several models are examined which can improve performance when drift is present. / Doctor of Philosophy / Radio frequency fingerprinting allows uniquely identifying a transmitter based on characteristics of the signal it emits. In this dissertation several extensions to current fingerprinting techniques are given. Together, these allow identification of transmitters which have changed the signal sent, identifying using different measurement types, and compensating for variation in a transmitter's behavior due to changes in temperature.
13

Fine-tuned convolutional neural networks for improved glaucoma prediction

Smedjegård, Filip January 2024 (has links)
Early detection is crucial for effectively treating glaucoma, a leading cause of irreversible blindness. Diagnosing glaucoma can be challenging due to its subtle early symptoms. This study aims to enhance glaucoma prediction by fine-tuning pre-trained convolutional neural networks. Several networks were re-trained and tested on publicly available retinal image datasets. Additionally, the models were evaluated on fundus images from patients at Region Västernorrland (RVN). The methodology involved exploring how to effectively process and prepare patient data for prediction purposes. The results showed that a majority voting ensemble of the fine-tuned models produced the highest performance, achieving an accuracy of approximately 0.94, with a specificity and sensitivity of 0.97 and 0.90 respectively. The ensemble also identified 0.90 glaucomatous images from RVN correctly. In terms of specificity and sensitivity, all models outperformed the results of ophthalmologist specialists described in a previous study. The findings suggest the effectiveness of transfer learning in enhancing the diagnostic accuracy of glaucoma. It also underscores the importance of proper storage and preparation of medical data for developing predicitive machine learning models. / Glaukom, mer känt som grön starr, är en av de vanligast förekommande ögonsjukdomarna som orsakar blindhet. Det är viktigt att diagnostisera glaukom tidigt i sjukdomsförloppet för att genom behandling, sakta ner eller stoppa ytterligare synförlust. Att diagnostisera glaukom kan vara utmanande, eftersom det vanligtvis inte visar några tidiga symtom. Artificiell intelligens (AI), eller mer specifikt maskininlärning (ML), kan hjälpa läkare att ställa rätt diagnos om det används som ett beslutsstöd. Faltande neurala nätverk (convolutional neural network, CNN) kan lära sig att känna igen mönster i bilder, för att därigenom klassificera bilder till olika kategorier. Ett sätt att diagnostisera glaukom är att studera näthinnan och synnerven i ögats bakre del, som kallas ögonbotten. I denna studie finjusterades redan tränade CNN:s för att prediktera glaukom utifrån ögonbottenbilder. Detta uppnåddes genom att träna om modellerna på publikt tillgängliga ögonbottenbilder. Målet var att jämföra nätverkens noggrannhet på en delmängd av bilderna, samt att evaluera dem på ögonbottenbilder från sjukhus i Region Västernorrland (RVN). För att uppnå detta ingick det även i metodiken att utforska begränsningarna och möjligheterna med hur patientdata får användas, samt att undersöka hur datat bör lagras och tillrättaläggas för att möjliggöra utvecklingen av prediktionsmodeller. Syftet med studien var att öka noggrannheten vid diagnostisering av glaukom. Resultaten visade att en ensemble baserad på majoritetsröstning av alla modeller gav den bästa noggrannheten, ungefär 0.94. Sensitiviteten och specificiteten var 0.90, respektive 0.97. Vidare klassificerades 90% av ögonbottenbilderna från RVN korrekt. Resultaten tyder på att maskininlärning är effektivt för att förbättra den diagnostiska noggrannheten för glaukom. Det understryker också vikten av strategisk lagring och förberedelse av medicinska data för att utveckla prediktiva maskininlärningsmodeller i framtiden.
14

ADVANCED TRANSFER LEARNING IN DOMAINS WITH LOW-QUALITY TEMPORAL DATA AND SCARCE LABELS

Abdel Hai, Ameen, 0000-0001-5173-5291 12 1900 (has links)
Numerous of high-impact applications involve predictive modeling of real-world data. This spans from hospital readmission prediction for enhanced patient care up to event detection in power systems for grid stabilization. Developing performant machine learning models necessitates extensive high-quality training data, ample labeled samples, and training and testing datasets derived from identical distributions. Though, such methodologies may be impractical in applications where obtaining labeled data is expensive or challenging, the quality of data is low, or when challenged with covariate or concept shifts. Our emphasis was on devising transfer learning methods to address the inherent challenges across two distinct applications.We delved into a notably challenging transfer learning application that revolves around predicting hospital readmission risks using electronic health record (EHR) data to identify patients who may benefit from extra care. Readmission models based on EHR data can be compromised by quality variations due to manual data input methods. Utilizing high-quality EHR data from a different hospital system to enhance prediction on a target hospital using traditional approaches might bias the dataset if distributions of the source and target data are different. To address this, we introduce an Early Readmission Risk Temporal Deep Adaptation Network, ERR-TDAN, for cross-domain knowledge transfer. A model developed using target data from an urban academic hospital was enhanced by transferring knowledge from high-quality source data. Given the success of our method in learning from data sourced from multiple hospital systems with different distributions, we further addressed the challenge and infeasibility of developing hospital-specific readmission risk prediction models using data from individual hospital systems. Herein, based on an extension of the previous method, we introduce an Early Readmission Risk Domain Generalization Network, ERR-DGN. It is adept at generalizing across multiple EHR data sources and seamlessly adapting to previously unseen test domains. In another challenging application, we addressed event detection in electrical grids where dependencies are spatiotemporal, highly non-linear, and non-linear systems using high-volume field-recorded data from multiple Phasor Measurement Units (PMUs). Existing historical event logs created manually do not correlate well with the corresponding PMU measurements due to scarce and temporally imprecise labels. Extending event logs to a more complete set of labeled events is very costly and often infeasible to obtain. We focused on utilizing a transfer learning method tailored for event detection from PMU data to reduce the need for additional manual labeling. To demonstrate the feasibility, we tested our approach on large datasets collected from the Western and Eastern Interconnections of the U.S.A. by reusing a small number of carefully selected labeled PMU data from a power system to detect events from another. Experimental findings suggest that the proposed knowledge transfer methods for healthcare and power system applications have the potential to effectively address the identified challenges and limitations. Evaluation of the proposed readmission models show that readmission risk predictions can be enhanced when leveraging higher-quality EHR data from a different site, and when trained on data from multiple sites and subsequently applied to a novel hospital site. Moreover, labels scarcity in power systems can be addressed by a transfer learning method in conjunction with a semi-supervised algorithm that is capable of detecting events based on minimal labeled instances. / Computer and Information Science
15

Graph neural networks for prediction of formation energies of crystals / Graf-neuronnät för prediktion av kristallers formationsenergier

Ekström, Filip January 2020 (has links)
Predicting formation energies of crystals is a common but computationally expensive task. In this work, it is therefore investigated how a neural network can be used as a tool for predicting formation energies with less computational cost compared to conventional methods. The investigated model shows promising results in predicting formation energies, reaching below a mean absolute error of 0.05 eV/atom with less than 4000 training datapoints. The model also shows great transferability, being able to reach below an MAE of 0.1 eV/atom with less than 100 training points when transferring from a pre-trained model. A drawback of the model is however that it is relying on descriptions of the crystal structures that include interatomic distances. Since these are not always accurately known, it is investigated how inaccurate structure descriptions affect the performance of the model. The results show that the quality of the descriptions definitely worsen the accuracy. The less accurate descriptions can however be used to reduce the search space in the creation of phase diagrams, and the proposed workflow which combines conventional density functional theory and machine learning shows a reduction in time consumption of more than 50 \% compared to only using density functional theory for creating a ternary phase diagram.
16

Interpretation of Swedish Sign Language using Convolutional Neural Networks and Transfer Learning

Halvardsson, Gustaf, Peterson, Johanna January 2020 (has links)
The automatic interpretation of signs of a sign language involves image recognition. An appropriate approach for this task is to use Deep Learning, and in particular, Convolutional Neural Networks. This method typically needs large amounts of data to be able to perform well. Transfer learning could be a feasible approach to achieve high accuracy despite using a small data set. The hypothesis of this thesis is to test if transfer learning works well to interpret the hand alphabet of the Swedish Sign Language. The goal of the project is to implement a model that can interpret signs, as well as to build a user-friendly web application for this purpose. The final testing accuracy of the model is 85%. Since this accuracy is comparable to those received in other studies, the project’s hypothesis is shown to be supported. The final network is based on the pre-trained model InceptionV3 with five frozen layers, and the optimization algorithm mini-batch gradient descent with a batch size of 32, and a step-size factor of 1.2. Transfer learning is used, however, not to the extent that the network became too specialized in the pre-trained model and its data. The network has shown to be unbiased for diverse testing data sets. Suggestions for future work include integrating dynamic signing data to interpret words and sentences, evaluating the method on another sign language’s hand alphabet, and integrate dynamic interpretation in the web application for several letters or words to be interpreted after each other. In the long run, this research could benefit deaf people who have access to technology and enhance good health, quality education, decent work, and reduced inequalities. / Automatisk tolkning av tecken i ett teckenspråk involverar bildigenkänning. Ett ändamålsenligt tillvägagångsätt för denna uppgift är att använda djupinlärning, och mer specifikt, Convolutional Neural Networks. Denna metod behöver generellt stora mängder data för att prestera väl. Därför kan transfer learning vara en rimlig metod för att nå en hög precision trots liten mängd data. Avhandlingens hypotes är att utvärdera om transfer learning fungerar för att tolka det svenska teckenspråkets handalfabet. Målet med projektet är att implementera en modell som kan tolka tecken, samt att bygga en användarvänlig webapplikation för detta syfte. Modellen lyckas klassificera 85% av testinstanserna korrekt. Då denna precision är jämförbar med de från andra studier, tyder det på att projektets hypotes är korrekt. Det slutgiltiga nätverket baseras på den förtränade modellen InceptionV3 med fem frysta lager, samt optimiseringsalgoritmen mini-batch gradient descent med en batchstorlek på 32 och en stegfaktor på 1,2. Transfer learning användes, men däremot inte till den nivå så att nätverket blev för specialiserat på den förtränade modellen och dess data. Nätverket har visat sig vara ickepartiskt för det mångfaldiga testningsdatasetet. Förslag på framtida arbeten inkluderar att integrera dynamisk teckendata för att kunna tolka ord och meningar, evaluera metoden på andra teckenspråkshandalfabet, samt att integrera dynamisk tolkning i webapplikationen så flera bokstäver eller ord kan tolkas efter varandra. I det långa loppet kan denna studie gagna döva personer som har tillgång till teknik, och därmed öka chanserna för god hälsa, kvalitetsundervisning, anständigt arbete och minskade ojämlikheter.
17

Evaluating CNN Architectures on the CSAW-M Dataset / Evaluering av olika CNN Arkitekturer på CSAW-M

Kristoffersson, Ludwig, Zetterman, Noa January 2022 (has links)
CSAW-M is a dataset that contains about 10 000 x-ray images created from mammograms. Mammograms are used to identify patients with breast cancer through a screening process with the goal of catching cancer tumours early. Modern convolutional neural networks are very sophisticated and capable of identifying patterns nearly indistinguishable to humans. CSAW-M doesn’t contain images of active cancer tumours, rather, whether the patient will develop cancer or not. Classification tasks such as this are known to require large datasets for training, which is cumbersome to acquire in the biomedical domain. In this paper we investigate how classification performance of non-trivial classification tasks scale with the size of available annotated images. To research this, a wide range of data-sets are generated from CSAW-M, with varying sample size and cancer types. Three different convolutional neural networks were trained on all data-sets. The study showed that classification performance does increase with the size of the annotated dataset. All three networks generally improved their prediction on the supplied benchmarking dataset. However, the improvements were very small and the research question could not be conclusively answered. The primary reasons for this was the challenging nature of the classification task, and the size of the data-set. Further research is required to gain more understanding of how much data is needed to yield a usable model. / CSAW-M är ett dataset som innehåller ungefär 10 000 röntgenbilder skapade från ett stort antal mammografier. Mammografi används för att identifiera patienter med bröstcancer genom en screeningprocess med målet att fånga cancerfall tidigt. Moderna konvolutionella neurala nätverk är mycket sofistikerade och kan tränas till att identifiera mönster i bilder mycket bättre än människor. CSAW-M innehåller inga bilder av cancertumörer, utan istället data på huruvida patienten kommer att utveckla cancer eller inte. Klassificeringsuppgifter som denna är kända för att kräva stora datamängder för träning, vilket är svårt att införskaffa inom den biomedicinska domänen. I denna artikel undersöker vi hur klassificerings prestanda för svåra klassificeringsuppgifter skalar med storleken på tillgänglig annoterad data. För att undersöka detta, genererades ett antal nya dataset från CSAW-M, med varierande storleksurval och cancertyp. Tre olika konvolutionella neurala nätverk tränades på alla nya data-set. Studien visar att klassificeringsprestanda ökar med storleken på den annoterade datamängden. Alla tre nätverk förbättrade generellt sin klassificeringsprestanda desto större urval som gjordes från CSAW-M. Förbättringarna var dock små och den studerade frågan kunde inte besvaras fullständigt. De främsta anledningarna till detta var klassificeringsuppgiftens utmanande karaktär och storleken på det tillgängliga datat i CSAW-M. Ytterligare forskning krävs för att få mer förståelse för hur mycket data som behövs för att skapa en användbar modell.
18

Fuzzy transfer learning

Shell, Jethro January 2013 (has links)
The use of machine learning to predict output from data, using a model, is a well studied area. There are, however, a number of real-world applications that require a model to be produced but have little or no data available of the specific environment. These situations are prominent in Intelligent Environments (IEs). The sparsity of the data can be a result of the physical nature of the implementation, such as sensors placed into disaster recovery scenarios, or where the focus of the data acquisition is on very defined user groups, in the case of disabled individuals. Standard machine learning approaches focus on a need for training data to come from the same domain. The restrictions of the physical nature of these environments can severely reduce data acquisition making it extremely costly, or in certain situations, impossible. This impedes the ability of these approaches to model the environments. It is this problem, in the area of IEs, that this thesis is focussed. To address complex and uncertain environments, humans have learnt to use previously acquired information to reason and understand their surroundings. Knowledge from different but related domains can be used to aid the ability to learn. For example, the ability to ride a road bicycle can help when acquiring the more sophisticated skills of mountain biking. This humanistic approach to learning can be used to tackle real-world problems where a-priori labelled training data is either difficult or not possible to gain. The transferral of knowledge from a related, but differing context can allow for the reuse and repurpose of known information. In this thesis, a novel composition of methods are brought together that are broadly based on a humanist approach to learning. Two concepts, Transfer Learning (TL) and Fuzzy Logic (FL) are combined in a framework, Fuzzy Transfer Learning (FuzzyTL), to address the problem of learning tasks that have no prior direct contextual knowledge. Through the use of a FL based learning method, uncertainty that is evident in dynamic environments is represented. By combining labelled data from a contextually related source task, and little or no unlabelled data from a target task, the framework is shown to be able to accomplish predictive tasks using models learned from contextually different data. The framework incorporates an additional novel five stage online adaptation process. By adapting the underlying fuzzy structure through the use of previous labelled knowledge and new unlabelled information, an increase in predictive performance is shown. The framework outlined is applied to two differing real-world IEs to demonstrate its ability to predict in uncertain and dynamic environments. Through a series of experiments, it is shown that the framework is capable of predicting output using differing contextual data.
19

Transfer learning for object category detection

Aytar, Yusuf January 2014 (has links)
Object category detection, the task of determining if one or more instances of a category are present in an image with their corresponding locations, is one of the fundamental problems of computer vision. The task is very challenging because of the large variations in imaged object appearance, particularly due to the changes in viewpoint, illumination and intra-class variance. Although successful solutions exist for learning object category detectors, they require massive amounts of training data. Transfer learning builds upon previously acquired knowledge and thus reduces training requirements. The objective of this work is to develop and apply novel transfer learning techniques specific to the object category detection problem. This thesis proposes methods which not only address the challenges of performing transfer learning for object category detection such as finding relevant sources for transfer, handling aspect ratio mismatches and considering the geometric relations between the features; but also enable large scale object category detection by quickly learning from considerably fewer training samples and immediate evaluation of models on web scale data with the help of part-based indexing. Several novel transfer models are introduced such as: (a) rigid transfer for transferring knowledge between similar classes, (b) deformable transfer which tolerates small structural changes by deforming the source detector while performing the transfer, and (c) part level transfer particularly for the cases where full template transfer is not possible due to aspect ratio mismatches or not having adequately similar sources. Building upon the idea of using part-level transfer, instead of performing an exhaustive sliding window search, part-based indexing is proposed for efficient evaluation of templates enabling us to obtain immediate detection results in large scale image collections. Furthermore, easier and more robust optimization methods are developed with the help of feature maps defined between proposed transfer learning formulations and the “classical” SVM formulation.
20

Bayesian Learning with Dependency Structures via Latent Factors, Mixtures, and Copulas

Han, Shaobo January 2016 (has links)
<p>Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.</p> / Dissertation

Page generated in 0.0819 seconds