• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 59
  • 59
  • 15
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative decoding techniques for block based error correction codes

Hirst, Simon January 2002 (has links)
No description available.
2

Novel methods in the improvement of turbo codes and their decoding

Rogers, Andrew John January 2013 (has links)
The performance of turbo codes can often be improved by improving the weight spectra of such codes. Methods of producing the weight spectra of turbo codes have been investigated and many improvements were made to refine the techniques. A much faster method of weight spectrum evaluation has been developed that allows calculation of weight spectra within a few minutes on a typical desktop PC. Simulation results show that new high performance turbo codes are produced by the optimisation methods presented. The two further important areas of concern are the code itself and the decoding. Improvements of the code are accomplished through optimisation of the interleaver and choice of constituent coders. Optimisation of interleaves can also be accomplished automatically using the algorithms described in this work. The addition of a CRC as an outer code proved to offer a vast improvement on the overall code performance. This was achieved without any code rate loss as the turbo code is punctured to make way for the CRC remainder. The results show a gain of 0.4dB compared to the non-CRC (1014,676) turbo code. Another improvement to the decoding performance was achieved through a combination of MAP decoding and Ordered Reliability decoding. The simulations show a performance of just 0.2dB from the Shannon limit. The same code without ordered reliability decoding has a performance curve which is 0.6dB from the Shannon limit. In situations where the MAP decoder fails to converge ordered reliability decoding succeeds in producing a codeword much closer to the received vector, often the correct codeword. The ordered reliability decoding adds to the computational complexity but lends itself to FPGA implementation.
3

AN ADVANCED RECONFIGURABLE MULTI-CHANNEL COMMUNICATION TERMINAL FOR TELEMETRY APPLICATIONS BASED ON FLEXICOM 260A

Chandran, Henry 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Traditional communication hardware has focused on modular architectures. Now, with the incoming high speed DSP and FPGAs a shift from traditional modular architecture to reconfigurable architecture has taken place. The nature of this architecture allows to optimize various telemetry applications in a single platform. This paper describes a reconfigurable multi channel communication system.
4

Étude du codage de sources distribuées pour de nouveaux concepts en compression vidéo

Lajnef, Khaled Guillemot, Christine January 2006 (has links) (PDF)
Thèse doctorat : Traitement du signal et télécommunications : Rennes 1 : 2006. / Bibliogr. p. 197-204.
5

Iterative decoding of concatenated codes

Fagervik, Kjetil January 1998 (has links)
No description available.
6

Performance of a Low Rate Duo - Binary Turbo Decoder With Genetic Optimization

Chowdhari, Vikram 05 August 2009 (has links)
No description available.
7

BANDWIDTH EFFICIENT CONCATENATED CODES FOR EARTH OBSERVATION TELEMETRY

Calzolari, Gian Paolo, Cancellieri, Giovanni, Chiaraluce, Franco, Garello, Roberto 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Telemetry for Earth-Observation missions is characterized by very high data rates and stringent requirements. Channel codes both power and bandwidth efficient must be used to improve downlink performance and to achieve the very low values of error rates needed at the received side. In this paper, we review and analyzed three codes of possible interest for these applications: turbo codes, serial turbo codes and product codes. These schemes are evaluated and compared both by simulation and analytical techniques. A particular attention is devoted to complexity, a key issue for practical implementation at high data rates.
8

Optimisation of Iterative Multi-user Receivers using Analytical Tools

Shepherd, David Peter, RSISE [sic] January 2008 (has links)
The objective of this thesis is to develop tools for the analysis and optimization of an iterative receiver. These tools can be applied to most soft-in soft-out (SISO) receiver components. For illustration purposes we consider a multi-user DS-CDMA system with forward error correction that employs iterative multi-user detection based on soft interference cancellation and single user decoding. Optimized power levels combined with adaptive scheduling allows for efficient utilization of receiver resources for heavily loaded systems.¶ Metric transfer analysis has been shown to be an accurate method of predicting the convergence behavior of iterative receivers. EXtrinsic Information (EXIT), fidelity (FT) and variance (VT) transfer analysis are well-known methods, however the relationship between the different approaches has not been explored in detail. We compare the metrics numerically and analytically and derive functions to closely approximate the relationship between them. The result allows for easy translation between EXIT, FT and VT methods. Furthermore, we extend the $J$ function, which describes mutual information as a function of variance, to fidelity and symbol error variance, the Rayleigh fading channel model and a channel estimate. These $J$ functions allow the \textit{a priori} inputs to the channel estimator, interference canceller and decoder to be accurately modeled. We also derive the effective EXIT charts which can be used for the convergence analysis and performance predictions of unequal power CDMA systems.¶ The optimization of the coded DS-CDMA system is done in two parts; firstly the received power levels are optimized to minimize the power used in the terminal transmitters, then the decoder activation schedule is optimized such that the multi-user receiver complexity is minimized. The uplink received power levels are optimized for the system load using a constrained nonlinear optimization approach. EXIT charts are used to optimize the power allocation in a multi-user turbo-coded DS-CDMA system. We show through simulation that the optimized power levels allow for successful decoding of heavily loaded systems with a large reduction in the convergence SNR.¶ We utilize EXIT chart analysis and a Viterbi search algorithm to derive the optimal decoding schedule for a multi component receiver/decoder. We show through simulations that decoding delay and complexity can be significantly reduced while maintaining BER performance through optimization of the decoding schedule.
9

Hardware Accelerator for Duo-binary CTC decoding : Algorithm Selection, HW/SW Partitioning and FPGA Implementation

Bjärmark, Joakim, Strandberg, Marco January 2006 (has links)
<p>Wireless communication is always struggling with errors in the transmission. The digital data received from the radio channel is often erroneous due to thermal noise and fading. The error rate can be lowered by using higher transmission power or by using an effective error correcting code. Power consumption and limits for electromagnetic radiation are two of the main problems with handheld devices today and an efficient error correcting code will lower the transmission power and therefore also the power consumption of the device. </p><p>Duo-binary CTC is an improvement of the innovative turbo codes presented in 1996 by Berrou and Glavieux and is in use in many of today's standards for radio communication i.e. IEEE 802.16 (WiMAX) and DVB-RSC. This report describes the development of a duo-binary CTC decoder and the different problems that were encountered during the process. These problems include different design issues and algorithm choices during the design.</p><p>An implementation in VHDL has been written for Alteras Stratix II S90 FPGA and a reference-model has been made in Matlab. The model has been used to simulate bit error rates for different implementation alternatives and as bit-true reference for the hardware verification.</p><p>The final result is a duo-binary CTC decoder compatible with Alteras Stratix II designs and a reference model that can be used when simulating the decoder alone or the whole signal processing chain. Some of the features of the hardware are that block sizes, puncture rates and number of iterations are dynamically configured between each block Before synthesis it is possible to choose how many decoders that will work in parallel and how many bits the soft input will be represented in. The circuit has been run in 100 MHz in the lab and that gives a throughput around 50Mbit with four decoders working in parallel. This report describes the implementation, including its development, background and future possibilities.</p>
10

Application of Turbo-Codes in Digital Communications

Haj Shir Mohammadi, Atousa January 2001 (has links)
This thesis aims at providing results and insight towards the application of turbo-codes in digital communication systems, mainly in three parts. The first part considers systems of combined turbo-code and modulation. This section follows the pragmatic approach of the first proposed such system. It is shown that by optimizing the labeling method and/or modifying the puncturing pattern, improvements of more than 0. 5 dB insignal to noise ratio (SNR) are achieved at no extra cost of energy, complexity, or delay. Conventional turbo-codes with binary signaling divide the bit energy equally among the transmitted turbo-encoder output bits. The second part of this thesis proposes a turbo-code scheme with unequal power allocation to the encoder output bits. It is shown, both theoretically and by simulation, that by optimizing the power allocated to the systematic and parity check bits, improvements of around 0. 5 dB can be achieved over the conventional turbo-coding scheme. The third part of this thesis tackles the question of ``the sensitivity of the turbo-code performance towards the choice of the interleaver'', which was brought up since the early studies of these codes. This is the first theoretical approach taken towards this subject. The variance of the bound is evaluated. It is proven that the ratio of the standard deviation over the mean of the bound is asymptotically constant (for large interleaverlength, N), decreases with N, and increases with SNR. The distribution of the bound is also computationally developed. It is shown that as SNR increases, a very low percentage of the interleavers deviate quite significantly from the average bound but the majority of the random interleavers result in performances very close to the average. The contributions of input words of different weights in the variance of performance bound are also evaluated. Results show that these contributions vary significantly with SNR and N. These observations are important when developing interleaver design algorithms.

Page generated in 0.0669 seconds