Spelling suggestions: "subject:"[een] UNION OF BALLS"" "subject:"[enn] UNION OF BALLS""
1 |
[en] UNION OF BALLS, MEDIAL AXIS AND DEFORMATIONS IN THREE-DIMENSIONAL SPACE / [pt] UNIÃO DE BOLAS, EIXO MEDIAL E DEFORMAÇÕES NO ESPAÇO TRIDIMENSIONALBETINA VATH 28 September 2007 (has links)
[pt] O eixo medial é uma descrição compacta de um objeto que
preserva sua
topologia e induz naturalmente uma discretização da sua
forma como união
de bolas. O estudo de união de bolas possui aplicações em
diversas áreas da
Matemática, em particular na Geometria Computacional onde
se usa, por
exemplo, para reconstrução de curvas e superfícies. Este
trabalho pretende
utilizar união de bolas para simular deformações a partir
do eixo medial,
apresentando conceitos e teoremas a fim de construir
algoritmos para a
extração do eixo medial em R3. A deformação será, então,
definida por
movimentos locais das bolas ao longo das direções do eixo
medial. Este
trabalho contém resultados com movimentos simples, em um
programa que
utiliza a biblioteca CGAL / [en] The medial axis is a compact description of an object that
preserves its
topology and naturally induces a discretisation of its
forma in terms of
union of balls. The study of union of balls has
applications in various areas
of Mathematics, in particular in Computational Geometry
where it is used
for curve and surface reconstruction. This work pretends
to use union of
balls in order to simulate deformations described on the
medial axis. It
introduces concepts and theorems in order to setup
algorithms for medial
axis extraction in R3. The deformation will thus be
defined by local ball
moves along the medial axis directions. This work contains
results with
simple movements, in a program that uses the CGAL library
|
2 |
[en] EVOLUTION OF UNION OF BALLS FROM ITS MEDIAL AXIS / [pt] EVOLUÇÃO DE UNIÃO DE BOLAS A PARTIR DO EIXO MEDIALCYNTHIA DE OLIVEIRA LAGE FERREIRA 27 June 2005 (has links)
[pt] O estudo computacional de uniões de bolas possui aplicações
em diversas
áreas da Matemática. O objetivo principal deste trabalho é
propor uma
simplificação de união de bolas em R2 através de um
movimento que obedece
as direções do eixo medial, procurando preservar os grandes
elementos
geométricos da união de bolas. A desconexão ou não das
formas é um aspecto
essencial da evolução. Em alguns casos, pode significar uma
divisão importante
do objeto. Em outros, pode ser indesejada, pois gostaríamos
de ter uma versão
conexa simplificada da forma. / [en] The computational study of unions of balls has applications
in several
domains of the Mathematics. The purpose of this
dissertation is to propose
a simplification of the union of balls in R2 through a
movement that obeys
the direction of the medial axis in order to simplify it,
maintaining the major
geometric elements of its shape. The disconnection of the
shape is an essential
property of the evolution. In some cases, it could mean an
important division
of the object. In others, it may be undesirable because we
would like to have
a simplified version connected of this shape.
|
3 |
Unions finies de boules avec marges interne et externe / Finite unions of balls with inner and outer marginsNguyen, Tuong 27 March 2018 (has links)
Représenter un objet géométrique complexe par un ensemble de primitives simples est une tâche souvent fondamentale, que ce soit pour la reconstruction et la réparation de données, ou encore pour faciliter la visualisation ou la manipulation des données. Le choix de la ou les primitives, ainsi que celui de la méthode d'approximation, impactent fortement les propriétés de la représentation de forme qui sera obtenue.Dans cette thèse, nous utilisons les boules comme seule primitive. Nous prenons ainsi un grand soin à décrire les unions finies de boules et leur structure. Pour cela, nous nous reposons sur les faisceaux de boules. En particulier, nous aboutissons à une description valide en toute dimension, sans hypothèse de position générale. En chemin, nous obtenons également plusieurs résultats portant sur les tests d'inclusion locale et globale dans une union de boules.Nous proposons également une nouvelle méthode d'approximation par union finie de boules, l'approximation par boules à (delta,epsilon)-près. Cette approche contraint l'union de boules à couvrir un sous-ensemble de la forme d'origine (précisément, un epsilon-érodé), tout en étant contenu dans un sur-ensemble de la forme (un delta-dilaté). En nous appuyant sur nos précédents résultats portant sur les unions de boules, nous démontrons plusieurs propriétés de ces approximations. Nous verrons ainsi que calculer une approximation par boules à (delta,epsilon)-près qui soit de cardinal minimum est un problème NP-complet. Pour des formes simples dans le plan, nous présentons un algorithme polynomial en temps et en espace qui permet de calculer ces approximations de cardinal minimum. Nous concluons par une généralisation de notre méthode d'approximation pour une plus large variété de sous-ensembles et sur-ensembles. / Describing a complex geometric shape with a set of simple primitives is often a fundamental task for shape reconstruction, visualization, analysis and manipulation. The type of primitives, as well as the choice of approximation scheme, both greatly impact the properties of the resulting shape representation.In this PhD, we focus on balls as primitives. Using pencils of balls, we carefully describe finite unions of balls and their structure. In particular, our description holds in all dimension without assuming general position. On our way, we also establish various results and tools to test local and global inclusions within these unions.We also propose a new approximation scheme by union of balls, the (delta,epsilon)-ball approximation. This scheme constrains the approximation to cover a core subset of the original shape (specifically, an epsilon-erosion), while being contained within a superset of the shape (a delta-dilation). Using our earlier results regarding finite unions of balls, we prove several properties of these approximations. We show that computing a cardinal minimum (delta,epsilon)-ball approximation is an NP-complete problem. For simple planar shapes however, we present a polynomial time and space algorithm that outputs a cardinal minimum approximation. We then conclude by generalizing the approximation scheme to a wider range of core subsets and bounding supersets.
|
Page generated in 0.0502 seconds