• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 29
  • 10
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 21
  • 17
  • 17
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effects of Water Flow on Bleaching of Palythoa Caribaeorum

Fujimura, Atsushi 01 November 2010 (has links)
Water flow is an important abiotic factor for corals and other cnidarians. This study shows how water flow influences bleaching in Palythoa caribaeorum. Colonies were exposed to flow (low = 3 cm s-1, high = 15 cm s-1) in two temperature regimes (low: 26.5°C, which is within natural variability on the reef where specimens were collected; high: 33.5°C, which is 3.5°C above usual summer temperature) in a unidirectional flume for 48 hours. Two sizes (small = 2.3 ± 0.2 cm, large = 7.3 ± 0.4 cm in diameter) were tested in six repeats per flow regime. Bleaching was determined by zooxanthellae count using a hemocytometer and by chlorophyll a concentration using fluorometry. Results suggest that onset of bleaching is rapid (within 48 hours) in high temperature. The low temperature did not cause significant bleaching. In the high temperature treatment, P. caribaeorum consistently bleached less in high flow. Upstream sides of large colonies bleached less than the downstream sides in high flow. In high flow, small colonies bleached less than large colonies. This suggests that enhanced diffusion of toxic oxygen species is important to mitigate bleaching and is more easily accomplished in small colonies, which may thus have an advantage during bleaching events, as has been observed in the literature.
42

Regional Economic Studies on Natural Resources and Their Economic Impact

Bae, Jinwon, Bae, Jinwon January 2017 (has links)
Various adaptation and mitigation strategies have been explored to cope with changes in the climate. Estimating these strategies impacts on the local economy is one of the growing and pressing issues for the management of natural resources. This thesis consists of three parts and aims to contribute to regional economic studies by analyzing: (1) the economic impact of solar energy facilities, (2) the level of virtual water flow and the effectiveness of scenarios to mitigate water resource shortage, and (3) the impact of climate change on agriculture through a Ricardian approach weighted by stream flow connectivity. As an increasingly adopted renewable energy resource, solar power has a high potential for carbon emission reduction and economic development. In the first essay the impacts on jobs, income, and economic output of a new solar power plant are calculated in an input-output framework. The contribution is twofold. First, we compare the multipliers generated by the construction and operation/maintenance of a plant located in California with those that would pertain had it been built in Arizona. Second, we point out the differences in the results obtained with the popular IMPLAN software from those obtained with the solar photovoltaic model of JEDI. The second essay focuses on water use in Arizona. As much as 73% of the state's scarce water is used by a single sector: crop production. Because 79% of Arizona's crop production is consumed outside the state, this means that, 67% of the water available in the state is being exported to the rest of the country and abroad. This should be of major concern for a state expected to see its population grow and its climate get drier. Using input-output techniques we explore three scenarios aimed at saving 19% of the water available. This figure is based on the results of the first of the scenarios that explores how much can be saved through improving the efficiency of the current irrigation system. The second scenario shows that equivalent water savings could be reached by a twenty-seven-fold increase in the price of water. The third scenario shows that a 19.5% reduction in crop exports could conserve an equal amount of water. The model results suggest that the least costly solution is a more efficient irrigation system, while export reduction is the second best choice. The third and final essay offers an extension of the well-known Ricardian model of agrarian economic rent. In spite of its popularity among studies of the impact of climate change on agriculture, there has been few attempts to examine the role of interregional spillovers in this framework. We remedy this gap by focusing on the spatial externalities of surface water flow used for irrigation purposes and demonstrate that farmland value—the usual dependent variable used in the Ricardian framework—is a function of the climate variables experienced locally and in upstream locations. This novel approach is tested empirically on a spatial panel model estimated across the counties of the Southwest USA for every five-year period from 1997 to 2012. This region is one of the driest in the country, hence its agriculture relies heavily on irrigation with the preponderance of the sources being surface water transported over long distances. The results highlight the significant role of irrigation spillovers and indicate that the actual impact of climate change on agriculture and subsequent adaptation policies can no longer overlook the streamflow network.
43

Response to Drought of a Stream Fish Assemblage in a High Elevation Stream in the Intermountain West

Simkins, Richard M. 01 July 2017 (has links)
One of the most influential disturbances for stream fish assemblages is large-scale declines in flow caused by periods of drought. Although stream characteristics are known to influence the response of stream fishes to drought, we asked if ecological traits of stream fishes determine, in part, their population level response to drought. To test for ecological trait-based responses to drought in a stream fish assemblage, we quantified species abundances over a period of 5 years that represented a wet to dry period. We sampled stream fishes in Yellow Creek, Wyoming, USA, a high elevation stream dependent on snow-storage for most of its flow. There were five regularly occurring species in the study site: redside shiner (Richardsonius balteatus), northern leatherside chub (Lepidomeda copei), mottled sculpin (Cottus bairdi), speckled dace (Rhinichthys osculus), and mountain sucker (Catostomus platyrhynchus). We used size class, species, and drought measures as predictors of abundance. Mean Palmer drought severity index over the growing season from the previous year (one year lag) provided the best predictor of stream fish abundances. Four of five species showed strong declines in abundance in response to drought conditions (mountain sucker abundance was not affected), but ecological traits of species were not good predictors of the magnitude of response to drought. Northern leatherside chub are most vulnerable to local extirpation during times of severe drought. Overall, juveniles showed a greater decline in abundance than adults in response to drought. Climate models predict that mountain streams will experience changes in flow regime, which may exacerbate effects of drought. Low flow refuge habitat may need to be incorporated into stream restoration designs to help increase recolonization in streams, especially for stream fishes that are most vulnerable to local extirpation and that have low recolonization rates.
44

Návrh úpravy toků s přihlédnutím k protipovodňové ochraně a revitalizaci / River regulation with flood protection and revitalization

Kadrnoška, Jakub January 2019 (has links)
The diploma thesis focuses on the design of the flow adjustment, taking into account the flood protection and revitalization of the Leskava river. The first step is creating a computing model of a river section using the programme HEC_RAS. Based on results and the course, there is an adjustment proposed and the prevention of infiltrations in the intravilan.
45

CFD Modellierung einer partikelbelasteten Kühlmittelströmung im Sumpf und in der Kondensationskammer

Grahn, Alexander, Cartland-Glover, Greg, Krepper, Eckhard January 2009 (has links)
Der Bericht beschreibt die Arbeiten zur CFD-Modellentwicklung zur Beschreibung des Fasertransportes in einer Wasserströmung, die im Unterauftrag der Hochschule Zittau/Görlitz erfolgten. Während die experimentellen Arbeiten zu dieser Thematik in Zittau durchgeführt wurden, lag der Schwerpunkt der theoretischen Arbeiten in Rossendorf. Im Arbeitspunkt EZ 1 des Projektantrages ist die Erweiterung der Einzeleffektuntersuchungen vorgesehen. Die entsprechenden Modellansätze zum Partikeltransport sind im Kapitel 3.1. beschrieben. Die Modellanpassung und Validierung ist in 3.2 und 3.3 dargestellt. Der Fasertransport in einer Wasserströmung wird durch Jet-Phänomene bestimmt. Untersuchungen dazu sind im EZ3.1 des Projektantrages: 3D-Phänomene infolge Blasenmitriss vorgesehen und die Modellansätze und der Vergleich zu Experimenten in den Kapiteln 4.1 bis 4.3 dargestellt. Des Weiteren wird der Einfluss auf den Ausgleich der Temperatur für den Fall untersucht, dass der Jet kälter als die Wasservorlage im Tank ist. Dieser Abschnitt entspricht damit der EZ3.2 des Antrages: 3D-Phänomene infolge Temperaturdifferenzen. Im Kapitel 4.4 wird auf die Strömungsvorgänge in der Zittauer Strömungswanne eingegangen und damit der Punkt EZ4 des Antrages: Integraluntersuchungen bearbeitet. Kapitel 5 beschreibt die Entwicklung eines Sieb-Modells, das die Faser-Kompaktierung berücksichtigt und auf der Darcy-Gleichung basiert. Die Modellparameter werden an Experimenten in Zittau justiert. Diese Experimente wurden für verschiedene Materialien durchgeführt und mit deren Hilfe ein Koeffizientenkatalog erstellt. Das Modell wurde in den CFD-Code CFX implementiert und anhand einiger Anwendungsbeispiele demonstriert.
46

Depositional Dynamics in Seagrass Systems of Tampa Bay, FL: Influence of Hydrodynamic Regime and Vegetation Density on Ecosystem Function

Meyers, Alison Cheryl 25 March 2010 (has links)
Many coastal ecosystems around the world are dominated by submerged aquatic vegetation (SAV) habitats. These SAV habitats are known to provide many highly valuable ecosystem services such as habitat for commercial important species and increased water clarity. Water flow is an environmental variable which can have measurable effects on the ecosystem services provided by SAV, but is often not considered in studies assessing these services. This dissertation sought to investigate the links between SAV, primarily seagrasses, and hydrodynamics, paying special attention to the effects on sediments and fauna. Three main areas are discussed: (1) the effects of SAV on flow, (2) the effects of SAV and flow on deposition in SAV beds, and (3) the effects of SAV and flow on faunal communities in SAV beds. Seagrasses and other SAV reduce currents, attenuate waves, and dampen turbulence within their vegetative canopies, which in turn can enhance deposition and reduce the resuspension of sediment, organic matter, and passively settling larvae. The ability of SAV to retard flow may be further enhanced by increases in vegetated structure, such as shoot density, biomass, or canopy height, which can promote increased abundance and diversity of in- and epifauna within SAV beds. Ultimately, it is clear that hydrodynamics is an important factor that shapes SAV communities both physically (e.g. deposition, sediment structure, etc.) and biologically (e.g. faunal community composition, predation pressure, food availability, etc.).
47

Långtidstrender i Rickleån : Samband mellan koncentrationer av organiskt material och vattenflöde 1970–2019 / Long-term trends in Rickleån : Relationship between concentrations of organic matter and water flow 1970-2019

Pettersson, Tobias January 2020 (has links)
Dissolved organic matter (DOM) in surface waters affect many important ecological functions. For instance, transporting metals, nutrients, carbon, affecting pH and water colour. In large parts of the Northen hemisphere, surface waters have become browner as a consequense of increasing DOM concentrations and, to some extent, iron. Therfore, altering ecological functions in waters. As such, knowing the causes and extent of the increase is of great importance. This paper used monthly data from the national Swedish monitoring program to investigate trends in DOM-concentrations in the Rickleå river, Västerbotten, Sweden. Results showed a large increase in concentrations of DOM from 1970-2019. However, the increase was most pronounced between 1970-1990, showing no trend after 2003 and indications of a decrease from 2009. DOM-quality changed as well to larger and more colored molecules during 1987-2002 and less coloured, smaller molecules after 2003. Changes in water flow could be an explanation for short-term fluctuations in DOM-concentration, but did not correlate well to increasing trends. However, a large lake at the river inlet as well as hydroelectric dams along the watershead complicates the interpretation between flow and DOM correlation. Climate change did not seem to be an important driver of long term increases in DOM. Further investigations should be carried out to test this hypothesis as well to investigate the cause for the increase.
48

2D numerické modelování proudění vody v záplavovém území - lokalita Břeclav / 2D numerical modelling of shallow water flow in floodplains

Monhartová, Pavlína January 2012 (has links)
The aim of the thesis is hydraulic computation of shallow water flow in floodplains with using 2D numerical modelling. Processing river is Dyje in the south of Moravia in location Břeclav. For model creation is necessary to know the software, accumulate input data and prepare model input parameters. Output data are process to form of maps water depths and maps water flow velocities.
49

Experimental Characterization and Modeling of Wettability in Two Phase Oil/Water Flow in the Annular Flume Apparatus

Blake, Kevin 04 June 2019 (has links)
No description available.
50

Hydraulic Effects of Perpendicular Water Approach Velocity on Meter Gate Flow Measurement

Thorburn, John M 01 August 2020 (has links) (PDF)
Accurate flow measurement is required to effectively manage water resources. California Senate Bill X7-7 (SB X7-7), legislates this need by requiring agricultural water providers serving areas greater than 25,000 acres to develop an Agricultural Water Management Plan (AWMP) and adopt pricing based at least partly on volumetric water deliveries (DWR, 2009). This study focused on two of the most common flow measurement/flow control devices used in California open channel water conveyance systems: the circular meter gate and the rectangular meter gate. Testing was conducted on three Armco-type (round gates over round discharge pipe) gates measuring 12”, 18”, and 24” and two rectangular gates (rectangular gates over round discharge pipe) measuring 18” and 24”. The three round gates used in the study were the Model 101C produced and provided by Fresno Valve and Castings Incorporated. The two rectangular meter gates were manufactured by Mechanical Associates located in Visalia, California and provided by the San Luis Canal Company located in Dos Palos, California. Testing was conducted in an outdoor laboratory setting at the Irrigation Training and Research Center’s (ITRC) Water Resources Facility at the California Polytechnic State University in San Luis Obispo, California under a variety of flow conditions as experienced in the field in order to: 1) evaluate the effectiveness of these gates as flow measurement devices and determine whether they meet the volumetric accuracy requirements outlined in SB X7-7, 2) develop standards for installation and use that improve flow measurement accuracy, 3) configure more accurate gate rating tables based on updated coefficient of discharge values, and 4) determine if additional gate rating tables are needed for “high” supply channel velocities. The meter gate was set perpendicular to the supply channel. Baseline data was first collected through testing with low supply channel water velocities. Additional testing was then conducted with high supply channel water velocities to analyze the effect on the coefficient of discharge. Based on previous studies it was hypothesized that as the Froude number (FR#) in the supply channel increased (water approach velocity increased), the coefficient of discharge would decrease as a result of an increase in energy needed for the perpendicular velocity transition. Data evaluation, however, indicated no statistically significant effect of water approach velocity on the coefficient of discharge for the 12”, 18” and 24” circular gates or the 18” and 24” rectangular gates at an α-level = 0.01. When operating the gates under recommended conditions relative flow uncertainty was within +/- 5%. This meets the accuracy requirements set by SB X7-7 for turnout flow measurement devices. Based on the results of this study, Cd values do not need to be adjusted for Froude numbers up to 0.35 for any of the studied gates. It should be noted, however, that while most meter gates used will be in conditions where supply channel Froude numbers do not exceed 0.35, further research is needed to study potential effects from Froude numbers exceeding the range found in this study.

Page generated in 0.0809 seconds