• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] CHARACTERISATION OF ALLOPTICAL WAVELENGTH CONVERSION BY CROSS-GAIN MODULATION IN SEMICONDUCTOR OPTICAL AMPLIFIERS / [pt] CARACTERIZAÇÃO DA CONVERSÃO DE COMPRIMENTO DE ONDA POR MODULAÇÃO DE GANHO CRUZADO EM AMPLIFICADORES ÓPTICOS SEMICONDUTORES

RAFAEL DE OLIVEIRA RIBEIRO 21 March 2006 (has links)
[pt] A conversão de comprimento de onda de sinais por meio de técnicas totalmente ópticas é um assunto inovador e de extrema necessidade para as redes com roteamento de comprimento de onda; a técnica de conversão de comprimentos de onda por modulação de ganho cruzado é uma das mais simples, em princípio, que atinge este objetivo. Duas modalidades são apresentadas neste trabalho: a clássica, também conhecida por pump & probe, e uma nova, a de modulação de ganho cruzado do espectro da ASE em um SOA. A técnica pump e probe é apresentada, assim como um experimento baseado nesta. A técnica de modulação de ganho cruzado da ASE é explorada como alternativa à técnicas de conversão de comprimento de onda que necessitam de outra fonte de luz, para a qual o sinal deve ser convertido. Na modulação de ganho cruzado da ASE, o sinal é convertido de luz coerente para incoerente; e, uma vez modulado o espectro da ASE do SOA, este é filtrado no comprimento de onda que se deseja obter a conversão. Assim, este conversor pode ser sintonizável, já que não é um parâmetro de entrada que define o comprimento de onda convertido, e sim um filtro passa-faixa ao fim do dispositivo. Para se avaliar os tempos de resposta da técnica, a conversão é feita utilizando-se pulsos elétricos ultracurtos (50 ps), o que não havia sido feito até então. / [en] Wavelength conversion of optical signals by all-optical techniques is an innovative and necessary technology for wavelength routed networks in the near future; the cross-gain modulation method is one of the simplest, in form, to attain this goal. Two categories of the main technique are presented: the classic, also known as pump and probe, and a novel one, named cross- gain modulation of the ASE spectrum of a SOA. The cross-gain modulation of the ASE spectrum is explored here as an alternative to previous all-optical wavelength conversion techniques that require another light source, to which the incoming signal is to be converted; the signal is converted from coherent to incoherent light; and, once modulated throughout the SOA`s ASE spectrum, the signal is then filtered at the central wavelength it is desired to be converted. Thus, this particular wavelength converter can be tunable, in the sense that it is reconfigurable, since a band pass filter located at the end of the device selects what wavelength the signal will be converted to. In order to assess the response times of the technique, the conversion is made for ultra short electrical pulses (50 ps), a feature unknown until now.
12

Arquitetura de nós e engenharia de tráfego em redes ópticas / Nodes architecture and traffic engineering in optical networks

Helvécio Moreira de Almeida Neto 25 September 2009 (has links)
A interligação de várias redes de telecomunicação ampliou a cobertura, mas tornou a operabilidade entre elas complexa, principalmente por causa da arquitetura resultante, formada por várias camadas. Estas camadas lidam com protocolos e taxas de transmissão diferentes e com sinais elétricos e ópticos. Diante desse cenário, a alternativa usual de expandir os recursos proporcionalmente ao crescimento da demanda é inviável devido ao elevado custo. Assim, soluções eficientes que agregam os benefícios das tecnologias ópticas e eletrônicas na arquitetura de nós e no gerenciamento de tráfego tornaram-se uma necessidade importante no projeto, expansão e gerenciamento de redes de telecomunicação. Os nós que permitem a comutação de tráfego na camada óptica e eletrônica e a agregação de tráfego em várias granularidades têm sido empregados para fazer o melhor uso possível dos recursos disponíveis nas redes. Esses nós são conhecidos na literatura como MG-OXCs. Nessa pesquisa, foi proposta uma abordagem dos nós MG-OXCs de uma e três camadas com a inclusão de recursos como conversão de comprimento de onda e agregação de tráfego. Também foi proposto um método de cálculo do custo desses nós baseado no volume de utilização das portas. Posteriormente foram inseridos fatores de degradação do sinal óptico para a análise da camada física de redes com os nós MGOXCs. Adicionalmente, para o gerenciamento de tráfego, foi proposto um esquema de escolha de comprimentos de onda chamado de canal específico e um esquema de monitoramento baseado na intensidade de tráfego. A meta principal é a redução da probabilidade de bloqueio de solicitação de conexão. Em redes ópticas, os modelos de nós propostos conseguem diminuir o número de portas dos nós comutadores tradicionais além de realizar a comutação de tráfego de conexões de diferentes valores de largura de banda. O esquema do canal específico consegue melhorar a utilização da largura de banda dos comprimentos de onda e diminui a probabilidade de bloqueio e o esquema do monitoramento diminui o número de conexões bloqueadas devido ao aumento dos recursos. Resultados numéricos apresentados demonstram a potencialidade dos algoritmos propostos para gerenciar recursos e rotear o tráfego das redes de telecomunicação. / Integrating telecommunication networks has enlarged the coverage, but has made operations more complex, mainly because of the architecture, formed by various layers. These layers deal with different protocols and transmission rates, as well as electrical and optical signals. The usual alternative of expanding the resources proportionally to the demand is impractical due to the high cost. Therefore, efficient solutions which add to the benefits of optical and electronic technology in node architecture and traffic management are essential in the design, expansion and management of telecommunications networks. The nodes that enable traffic switching in the optical and electronic layer and traffic grooming have been used to make the best use of the available resources in the networks. These nodes are known as MG-OXCs. In this research, an approach based on MG-OXCs was proposed with one and three layers, which include the wavelength conversion and traffic grooming. Additionally, a method to calculate the node costs based on their use of ports was proposed. The work also considered optical signal impairments in order to analyze the network physical layer with MG-OXCs nodes. For the purpose of traffic management, a scheme which sets specific wavelengths for different bandwidths and a scheme which monitors the flow of traffic were proposed. The main aim is to reduce the blocking probability of connection requests. In optical networks, the node models proposed are able to reduce the number of ports used in usual optical cross connects and switch the traffic connections using different bandwidths. The scheme of setting specific wavelengths for different bandwidths improves the bandwidth use and the blocking probability. The scheme which monitors the flow of traffic achieves blocking probability reduction due to the increase in resources. The numerical results presented show the feasibility of the proposed algorithms to manage resources and switch traffic in telecommunication networks.
13

Ανάπτυξη συστημάτων κωδίκων για την ανίχνευση και διόρθωση σφαλμάτων σε δεδομένα μετάδοσης

Τυχόπουλος, Αυξέντιος 16 June 2010 (has links)
Το ερευνητικό αντικείμενο της παρούσας διατριβής υπάγεται στον «Έλεγχο Σφαλμάτων» (Error Control), έναν επιστημονικό χώρο με καθοριστικής σημασίας συνεισφορά στην εξέλιξη των ψηφιακών τηλεπικοινωνιών. Πιο συγκεκριμένα, η παρούσα διατριβή πραγματεύεται την εφαρμογή του «ελέγχου σφαλμάτων» στην οπτική μετάδοση. Κατά τη διάρκεια της τελευταίας δεκαπενταετίας (‘93-‘08), τρεις γενιές «άμεσης διόρθωσης σφαλμάτων» (FEC) έχουν διαδεχθεί η μία την άλλη, σε ανταπόκριση προς τις ολοένα απαιτητικότερες προδιαγραφές των οπτικών ζεύξεων (υψηλότεροι ρυθμοί μετάδοσης και πυκνότερα οπτικά πλέγματα). Κατά κανόνα, οι μέθοδοι FEC κωδικοποιούν τα δεδομένα εισόδου χωρίς να έχουν γνώση γι’ αυτά (π.χ. δομή, πρωτόκολλο) και χωρίς να επεμβαίνουν σ’ αυτά. Η προσέγγιση αυτή καλείται «κωδικοποίηση εκτός ζώνης» (Out-Band Coding – OBC) και συνεπάγεται αύξηση του ρυθμού μετάδοσης στο οπτικό κανάλι σε σχέση με το ρυθμό των δεδομένων εισόδου, ανάλογα με το ποσοστό πλεονασμού του κώδικα. Ωστόσο, ο τελικός ρυθμός μετάδοσης στο κανάλι μπορεί να διατηρηθεί αμετάβλητος, αν το πρωτόκολλο μετάδοσης προβλέπει την ύπαρξη πλεονάσματος και μέρος αυτού μπορεί να διατεθεί για κωδικοποίηση FEC. Η εναλλακτική αυτή προσέγγιση καλείται «κωδικοποίηση εντός ζώνης» (In-Band Coding – IBC). Η «σύγχρονη ψηφιακή ιεραρχία» (SDH) και το «σύγχρονο οπτικό δίκτυο» (SONET) είναι τα πρότυπα, που σήμερα κυριαρχούν στις οπτικές τηλεπικοινωνίες. Με αφθονία πλεονάσματος στα πλαίσια μετάδοσης, τα παραπάνω σύγχρονα δίκτυα προσφέρονται για την IBC. Στα πλαίσια της παρούσας διατριβής, τα SDH & SONET αναλύθηκαν από κοινού για την εύρεση της βέλτιστης μεθόδου IBC με βάση έναν αριθμό από κριτήρια. Καταρχήν εξετάστηκε διεξοδικά το πλεόνασμα μετάδοσης για να εντοπιστούν τα διαθέσιμα bytes και να αιτιολογηθεί η δέσμευσή τους για την IBC. Στη συνέχεια, αναζητήθηκε ο βέλτιστος κώδικας FEC για τα δεδομένα πλαίσια μετάδοσης και με το δεδομένο πλεόνασμα (για την αποθήκευση των bits ισοτιμίας του κώδικα). Η βελτιστοποίηση κάλυψε όλους τους γραμμικούς και συστηματικούς κώδικες ανά κατηγορίες – ο χωρισμός τους σε κατηγορίες έγινε με βάση τις εξής βασικές ιδιότητες: α) την αλφάβητο: «δυαδικοί» έναντι «μη-δυαδικών», και β) τη διορθωτική ικανότητα: κώδικες κατάλληλοι για «τυχαία» (μεμονωμένα) σφάλματα έναντι κατάλληλων για «ομοβροντίες» (ριπές) σφαλμάτων. iii Από την παραπάνω διαδικασία βελτιστοποίησης προέκυψε μία μέθοδος IBC, που βασίζεται στο συρρικνωμένο Reed-Solomon κώδικα RS(240,236,9). Πρόκειται για μία εντελώς νέα μέθοδο και δικαιολογεί τη διάκρισή της ως βέλτιστη, έχοντας σαφή πλεονεκτήματα έναντι των μεθόδων, που είχαν προταθεί στο παρελθόν. Στα πλαίσια της παρούσας διατριβής, η παραπάνω βέλτιστη μέθοδος προτείνεται με το όνομα «FOCUS» για την κωδικοποίηση IBC στα δίκτυα SDH/SONET. Με στόχο την ακριβή πειραματική αξιολόγηση της προτεινόμενης μεθόδου FOCUS, υλοποιήθηκε κατόπιν ένας αριθμός από πρωτότυπα συστήματα, χρησιμοποιώντας τις διαθέσιμες μικροκυματικές κάρτες «10g-Tester». Αναλυτικότερα, η μοντελοποίηση έγινε στη γλώσσα περιγραφής υλικού VHDL και η υλοποίηση με προγραμματιζόμενη λογική (Xilinx® XC2V3000-4 FPGA). Τέλος, η πειραματική αξιολόγηση της προτεινόμενης μεθόδου FOCUS πραγματοποιήθηκε σε δύο διαδοχικές φάσεις: Στην πρώτη φάση, το σύστημα FOCUS αξιολογήθηκε ως μία «ανεξάρτητη» μέθοδος κωδικοποίησης FEC (stand-alone IBC evaluation). Η αξιολόγηση έγινε με ρυθμό μετάδοσης STM-64 σε κατάλληλα διαμορφωμένη, πειραματική οπτική ζεύξη «από-σημείο σε-σημείο» (point-to-point optical link), συνολικού μήκους ~88 χμ. Στην παραπάνω ζεύξη μετρήθηκαν οι επιδόσεις του FOCUS κατά την αντιστάθμιση των κυριότερων ατελειών της οπτικής μετάδοσης: α) της χρωματικής διασποράς (CD), β) της «παρασιτικής» ενίσχυσης του θορύβου από οπτικούς ενισχυτές (ASE) και γ) της μη-γραμμικής συμπεριφοράς (WDM -NL). Στη δεύτερη φάση, το σύστημα FOCUS αξιολογήθηκε ως μία «αναβάθμιση» για οπτικές ζεύξεις, οι οποίες διαθέτουν ήδη κωδικοποίηση OBC (evaluation of IBC and OBC in concatenation). Πιο συγκεκριμένα, το σύστημα FOCUS συνδέθηκε σε σειρά (ως εξωτερικός κώδικας) με το κατά ITU-T G.975 (2000) πρότυπο σύστημα κωδικοποίησης (OBC). Σε αυτή τη συνδεσμολογία, το σύστημα FOCUS αποτελεί τη δικλείδα ασφαλείας, που επεμβαίνει όταν ο εσωτερικός αποκωδικοποιητής (G.975) υπερχειλίζεται από τα σφάλματα του καναλιού. Η αξιολόγηση της υβριδικής αυτής μεθόδου κωδικοποίησης έγινε με ρυθμό μετάδοσης 10.66 Gb/s (SDH STM-64 x 15/14) σε μία καθαρά οπτική διάταξη μετατροπής μήκους κύματος, που αποτελείται από δύο οπτικούς ενισχυτές πυριτίου (SOA-based MZI). Ειδικότερα, μετρήθηκαν: α) η μείωση της ευαισθησίας της οπτικής διάταξης στις (τυχαίες) μεταβολές φάσης των δύο σημάτων εισόδου και β) η καθαρή συνεισφορά του συστήματος FOCUS, όταν αυτό επεμβαίνει ως δικλείδα ασφαλείας. Το FOCUS συγκεντρώνει σημαντική καινοτομία, τόσο στην επινόηση όσο και στην υλοποίηση. Όλα τα συμπεράσματα της αξιολόγησης έχουν δημοσιευτεί σε έγκυρα διεθνή περιοδικά και συνέδρια. / This Ph.D. thesis falls into “Error Control”, a scientific field with key contribution to the evolution of digital telecommunications. In specific, this thesis treats optical transmission in terms of “Error Control”. Noteworthy is the fact that during the last fifteen years (‘93-‘08), three generations of “Forward Error Correction” (FEC) methods for optical transmission have succeeded one another, in response to the increasingly demanding optical link specifications (higher transmission rates, denser wavelength mesh). In general, FEC-methods assume no prior knowledge of the input data (e.g. structure, protocol); in addition, input data are not modified at all (i.e. under normal channel conditions, output-data will be identical to the input data). This approach is called “Out-Band Coding” (OBC) and incurs an increase of the optical channel data-rate relatively to the input data-rate, inversely proportional to the coding-rate. Notwithstanding, the rate of the optical-channel can be kept unchanged, on condition that the transmission protocol provides “overhead” and part of this “overhead” can be allocated for parity-information. This alternative approach is called “In-Band Coding” (IBC). The “Synchronous Digital Hierarchy” (SDH) and the “Synchronous Optical Network” (SONET) are currently the dominant standards in optical communications. The abundance of overhead in transmission-frames renders these synchronous networks suitable for IBC. In this thesis, SDH and SONET were analyzed together to determine the optimum IBC method with respect to a number of criteria. Firstly, SDH/SONET transmission-overhead was scrutinized in order to identify available bytes and justify their commitment to implement IBC. Next, the optimum FEC-code was sought, given the size of the transmission-frames and the availability of overhead (to allocate the parity bits). Optimization spanned all linear and systematic codes. The codes were divided in groups according to the following fundamental properties: a) the underlying alphabet: “binary” versus “non-binary” codes, and b) the corrective power: codes, appropriate for “random” (isolated) errors versus codes, appropriate for “burst-form” errors. Optimization resulted in an IBC-method, which relies on the shortened Reed-Solomon code RS(240,236,9). This IBC-method is completely novel and its optimality can be verified by the clear advantages, it presents over methods that were proposed in the past. In this thesis, the above IBC-method is given the name “FOCUS” and proposed for IBC in SDH/SONET networks. In order to accurately measure the performance of the proposed method “FOCUS”, a number of prototypes were implemented by making use of microwave cards, called “10gv Tester”. More specifically, “FOCUS” was modelled in the “VHDL” hardware description language and its prototypes were implemented by means of a Xilinx® “XC2V3000-4” FPGA. The experimental evaluation of the proposed method was conducted in two successive phases: During the first phase, “FOCUS” was evaluated as an independent (stand-alone) FEC method. This evaluation took place at an STM-64 transmission-rate in a suitable experimental “point-to-point” optical link, whose length was ~88 km. In the above link, the performance of “FOCUS” was measured, in compensating the principal impairments of optical transmission: a) the chromatic dispersion (CD), b) the parasitic amplification of noise by optical amplifiers (ASE), and c) the non-linear behavior (WDM-NL). During the second phase, “FOCUS” was evaluated as an “upgrade” for optical links, which have already been equipped with OBC (evaluation of IBC and OBC in concatenation). Specifically, “FOCUS” was concatenated with the OBC-method, which has been proposed in rec. G.975 (ITU-T, 2000) with “FOCUS” as the outer- and “G.975” as the inner-code. In this arrangement, “FOCUS” plays the role of the “safety-valve”, which prevents the inner decoder (G.975) from deteriorating the error-rate of the optical link, when it is overwhelmed by severe channel-conditions. The evaluation of this hybrid coding-method took place at a transmissionrate of 10.66 Gb/s (SDH STM-64 x 15/14) in a purely optical wavelength conversion device, which consists of two silicon optical amplifiers (SOA-based MZI). In the above wavelengthconversion device, the following measurements were obtained: a) the reduction of sensitivity of the optical wavelength converter to the (random) phase-changes of the two input signals, and b) the net contribution of “FOCUS”, when acting as a “safety valve”. “FOCUS” has many innovative aspects, both in its conception and the implementation of its prototypes. All conclusions of the above two-phased experimental evaluation have been published in international journals and conferences.

Page generated in 0.0302 seconds