• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 61
  • 34
  • 20
  • 11
  • 10
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 451
  • 451
  • 152
  • 140
  • 77
  • 59
  • 53
  • 45
  • 44
  • 43
  • 43
  • 40
  • 36
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Development of the QFEM Solver : The Development of Modal Analysis Code for Wind Turbine Blades in QBLADE

Lennie, Matthew January 2013 (has links)
The Wind Turbine industry continues to drive towards high market penetrationand profitability. In order to keep Wind Turbines in field for as long as possiblecomputational analysis tools are required. The open source tool QBlade[38] softwarewas extended to now contain routines to analyse the structural properties of WindTurbine blades. This was achieved using 2D integration methods and a Tapered Euler-Bernoulli beam element in order to find the mode shapes and 2D sectional properties.This was a key step towards integrating the National Renewable Energy LaboratoriesFAST package[32] which has the ability to analyse Aeroelastic Responses. The QFEMmodule performed well for the test cases including: hollow isotropic blade, rotatingbeam and tapered beam. Some improvements can be made to the torsion estimationof the 2D sections but this has no effect on the mode shapes required for the FASTsimulations.
172

Simulating Dynamical Behaviour of Wind Power Structures

Ahlström, Anders January 2002 (has links)
The workin this thesis deals with the development of anaeroelastic simulation tool for horizontal axis wind turbineapplications. Horizontal axiswind turbines can experience significanttime varying aerodynamic loads, potentially causing adverseeffects on structures, mechanical components, and powerproduction. The need of computational and experimentalprocedures for investigating aeroelastic stability and dynamicresponse have increased as wind turbines become lighter andmore flexible. A finite element model for simulation of the dynamicresponse of horizontal axis wind turbines has been developed.The simulations are performed using the commercial finiteelement software SOLVIA, which is a program developed forgeneral analyses, linear as well as non-linear, static as wellas dynamic. The aerodynamic model, used to transform the windflow field to loads on the blades, is a Blade- Element/Momentummodel. The aerodynamic code is developed by FFA (TheAeronautical Research Institute of Sweden) and is astate-of-the-art code incorporating a number of extensions tothe Blade-Element/Momentum formulation. SOSIS-W, developed byTeknikgruppen AB was used to develop wind time series formodelling different wind conditions. The model is rather general, and different configurations ofthe structural model and various type of wind conditions couldeasily be simulated. The model is primarily intended for use asa research tool when influences of specific dynamic effects areinvestigated. Simulation results for the three-bladed wind turbine Danwin180 kW are presented as a verification example. <b>Keywords:</b>aeroelastic modelling, rotor aerodynamics,structural dynamics, wind turbine, AERFORCE, SOSIS-W,SOLVIA / NR 20140805
173

International Competitiveness of Wind Power Industry: : the case of GAMESA Corp. S.A

Batlle Linares, Oriol January 2011 (has links)
The modern lifestyle is highly dependent on the electricity consumption, which demand is expected to continue growing worldwide, especially in those developing areas where the whole economy is transforming. Until now, most of this electricity demand had been supplied through the combustion of fossil fuels or nuclear power. But the utilization of these energy sources to power the human activity is unsustainable because of limitless of the resources and the hazardous emissions and wastes that they generate. That is why since few decades ago thewind power became one of the best-positioned renewable energy in terms of costs effectiveness as a viable alternative to the energetic model based on pollutant fossil fuels. This technology was firstly developed and implemented on those countries with a traditional environmental conscientiousness, but as the global warming issue increased new countries were interested to use wind power as a clean and sustainable energy source. The growing wind power demand of developing countries has changed in few years the entire industry, because new local manufacturers have appeared thanks to the government renewable policy, which main objective is to develop a strong domestic wind power industry capable of lead the world transformation to a clean energy model. The thesis defines the most commons renewable energy policies, and focus in the policy used in China with the aim to analyze if it is promoting or damaging the expansion of wind power use because of the priority is protect its own domestic wind power industry from international firms. The conclusions are that those protectionist policies are useful in the early stage of the industry development but the government must know the exact moment in which these subsidies and supporting mechanisms become counterproductive. If those are used during a prolonged period, then companies become dependent on subsidies and don’t act like in free markets where the innovation is the key to gain and maintain sustainable competitive advantage.
174

On Asset Life Cycle Management for Offshore Wind Turbines : A Case Study of Horns Rev 1

Broliden, Caroline, Regnér, Linn January 2015 (has links)
The world’s first large scale offshore wind farm, Horns Rev 1, is approaching the decommissioning phase the profitability of future investments therefore has to be investigated further. Investment decision-making requires the consideration of several perspectives based on a life cycle view of the asset’s condition and profitability. In order to contribute to the economical perspective of Asset Life Cycle Management, a business case model has been developed in two parts, one that represents the whole wind farm and one for a single wind turbine. Through the two models, the user can examine the profitability of a wind farm from a system perspective as well as on a more detailed level. The purposes of these models are to assist in the budget planning of Horns Rev 1 and provide support for investment decisionmaking.
175

Control method for the wind turbine driven by doubly fed induction generator under the unbalanced operating conditions

ZHENG, XIANGPENG 14 May 2013 (has links)
No description available.
176

Numerical  Investigation of Savonius Wind Turbines

Raja Mahith Yelishetty (15400922) 03 May 2023 (has links)
<p>  </p> <p>In this study, we aimed to explore the potential of integrating wind turbines into tall buildings to harness wind energy in urban areas. Advanced computer simulations will be used to analyze the complex wind patterns and turbulence around tall buildings. We will also study the optimization of wind turbine placement to maximize energy production. We focus on two types of wind turbines, the savonius and a modified savonius, using the Myring formula. We evaluated their performance in turbulent urban areas using computational fluid dynamics simulations. The simulations will also help us understand the wind flow behavior around tall buildings, informing wind turbine placement optimization.</p> <p>Our findings contribute to the understanding of urban wind energy production. This may lead to further advancements in wind turbine design and application in urban environments, promoting sustainable and clean energy production in densely populated areas.</p> <p>We also evaluate the economic feasibility of wind power as an energy source and its potential for commercial applications. Our study's insights are significant for wind energy research, urban planning, and sustainable energy production in cities.</p> <p>To achieve our objectives, we will use state-of-the-art computational tools such as the ANSYS Fluent Student software and the Steady Reynolds Averaged Navier-Stokes (SRANS) K-ε model and K-ω SST models for simulating wind flow around tall buildings.</p> <p>In summary, the goal of this research is to develop a methodology for integrating wind turbines into tall urban buildings to harness wind energy potential. This will contribute to the understanding of urban wind energy production and its economic feasibility for commercial applications.</p>
177

Comparative Power Capture of Unmoored Floating Offshore Wind Turbines and Energy Ships

Connolly, Patrick 23 August 2022 (has links)
Given the bleak current and projected global climate trends, society is transitioning the energy systems that we rely upon away from fossil fuel based systems to reduce global CO2 emissions. There are now well-established technologies for providing renewable electricity at utility scales, such as wind turbines and solar panels, being deployed at an ever increasing pace. However, solutions for decarbonizing other sectors where fossil fuels are harder to replace are still needed. Current strategies for reducing fossil fuel use in these sectors rely on replacing them with synthetic fuels instead are produced using renewable electricity, and can therefore be part of a net-zero emissions cycle. The focus of this thesis is to examine a novel class of wind energy systems suitable for powering these fuel synthesis processes. Alternative applications of the proposed systems include powering direct air CO2 capture systems to support negative emissions technology efforts. This work develops and presents numerical models for concepts hereafter referred to as mobile offshore wind energy systems (MOWESs). A MOWES is a wind energy system that operates offshore and is not intended to remain stationary during operation. MOWESs would operate far from shore, harnessing a part of the wind resource that would not otherwise be usable. No full- or large-scale MOWES has yet been developed, and there is little work on developing these concepts, even within academia. Steady-state power performance models of two MOWES concepts, namely unmoored floating offshore wind turbines and energy ships, are developed to support further research in this field. Model results suggest that each concept has unique pros and cons and no conclusion can be drawn as to which technology is more effiient overall. A key conclusion of this work is that unmoored floating wind turbines can generate more power by sailing at a constant speed rather than holding station. We also conclude that unmoored floating wind turbines designed for downwind operation can produce as much power as conventional stationary wind turbines given sufficiently high wind speeds. Further work must examine whether the advantages of these technologies are exploitable given realistic wind conditions and when considering the complicated dynamics of the system. / Graduate / 2023-08-09
178

Intelligent Wind Turbine Using Fuzzy PID Control

Hedlund, Richard, Timarson, Niklas January 2017 (has links)
This thesis demonstrates how small wind turbines can contributeto a greener planet by using wind energy to generateelectrical power. It compares the conventional PIDcontroller with the Fuzzy PID controller, implemented ina small wind turbine that was constructed using variousmachines. The concept of changing the gain parameters of the PIDcontroller with fuzzy logic, depending on the wind directionfor greater power generation, is explained and tested. This,with usage of a DC-motor that gets an output signal fromthe system which reads input values from an encoder anda wind vane. The construction included a powertrain inwhich a transmission, roller bearings and shafts were implementedin the yaw mechanism. The tests resulted in showing that the Fuzzy PID controllerperformed better, minimizing the error, when theerror between the wind turbine and the wind itself, wassmall. The power generation was also increased when utilizingthe Fuzzy PID controller. However, the PID controllerperformed similar to the Fuzzy PID controller whenexposed to larger errors. / Det här arbetet visar hur små vindkraftverk kan bidra tillen grönare planet genom att omvandla vindenergi till elektriskenergi. Det beskriver jämförelsen mellan den vanligtförekommande PID regulatorn och den suddiga PID regulatorn,implementerad i ett litet vindkraftverk som konstruerades med hjälp av flertalet maskiner. Konceptet att ändra på parametrarna i PID regulatorn med hjälp av suddig logik, beroende på vindriktningen, förklaras och testas med syfte att generera energi. Dettamed hjälp av en DC-motor som får utsignaler från systemet som läser insignaler från en encoder och en vindflöjt. Konstruktionen av rotatonsmekanismen innehöll implementation av en växel, kullager och axlar. Testresultaten visade att den suddiga PID regleringenvar bättre på att minimera felet, när felet mellan vindkraftverket och vinden var litet. Även vid generering av energi,visade det sig att den suddiga PID regleringen presterade bättre. Likväl presterade PID regulatorn på samma nivå som den suddiga, när felet var större.
179

The Effect Of Magnetic Bearing On The Vibration And Friction Of A Wind Turbine

Vorwaller, Mark Ryan 01 January 2012 (has links)
Demands for sustainable energy have resulted in increased interest in wind turbines. Thus, despite widespread economic difficulties, global installed wind power increased by over 20% in 2011 alone. Recently, magnetic bearing technology has been proposed to improve wind turbine performance by mitigating vibration and reducing frictional losses. While magnetic bearing has been shown to reduce friction in other applications, little data has been presented to establish its effect on vibration and friction in wind turbines. Accordingly, this study provides a functional method for experimentally evaluating the effect of a magnetic bearing on the vibration and efficiency characteristics of a wind turbine, along with associated results and conclusions. The magnetic bearing under examination is a passive, concentric ring design. Vibration levels, dominant frequency components, and efficiency results are reported for the bearing as tested in two systems: a precision test fixture, and a small commercially available wind turbine. Data is also presented for a geometrically equivalent ball bearing, providing a benchmark for the magnetic bearing’s performance. The magnetic bearing is conclusively shown to reduce frictional losses as predicted by the original hypothesis. However, while reducing vibration in the precision test fixture, the magnetic bearing demonstrates increased vibration in the small wind turbine. This is explained in terms of the stiffness and damping of the passive test bearing. Thus, magnetic bearing technology promises to improve wind turbine performance, provided that application specific stiffness and damping characteristics are considered in the bearing design.
180

Modellering av en generator för en CRWT

Tekin, Jakob, Vestin, Jesper January 2022 (has links)
Researchers from Uppsala University have carried out a project with a vertical axis wind turbine (VAWT). This was designed for 12 kW. An extension to this project is to be carried out where a counter-clockwise rotating turbine is to be added. This means that two rotations are created and that a solution for the generator needs to be implemented so that the different rotations can be turned into electrical power. The new project is intended to function as a Counter Rotational Wind Turbine and result in a generator with a rated output of 30 kW. The idea with the addition of a counterclockwise rotating part is to double the electrical power extracted by the alternator without an increase in RPM. The objective of this project will be to investigate the design of a generator whose stator and rotor both rotate in opposite directions. The aim is to theoretically design such a generator and find out suitable parameters for it. During this process, the aim is also to gain a broad and clear understanding of generators in general and test whether Aluminum can be used in the construction. To test and explore the theory around CRWT, two generators of 10 kW and 30 kW respectively will be created based on the Rutger generator. The Rutger generator is the one used in the project for a 12 kW VAWT. Two generators are created to explore how a generator can be scaled up/down in power. The 10 kW generator will then be drawn in the program Solidworks to evaluate the mechanical design.The generators were first simulated in the program KALK, which is a program created by researchers at Uppsala University. This software performs calculations by invoking the program ACE and using FEM to calculate various parameters of generators. The 10 kW generator was first created from a file containing the Rutgers parameters. After optimizations, the 30 kW generator was created based on the 10 kW file. After simulations in Solidworks and KALK, it was found that a generator that theoretically works as a CRWT has been created and is stable. It was also determined that a more comprehensive feasibility study is required to succeed with a mechanical design for a CRWT and not theoretical. Aluminum was a sustainable material for the stator frame based on the results from FEMbut may need further testing.

Page generated in 0.0268 seconds