• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 61
  • 34
  • 20
  • 11
  • 10
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 451
  • 451
  • 152
  • 140
  • 77
  • 59
  • 53
  • 45
  • 44
  • 43
  • 43
  • 40
  • 36
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Commandes non linéaires robustes de systèmes éoliens / Nonlinear robust control of wind turbines systems

Guenoune, Ibrahim 08 February 2018 (has links)
Le travail de cette thèse s’inscrit dans la commande non linéaire des structures éoliennes. Le premier objectif de cette thèse est la commande d’une éolienne standard fonctionnant à vitesse et angle de calage variables. Les stratégies de commande proposées permettant de commander l’éolienne dans des zones de fonctionnement différentes (optimisation et limitation de la puissance produite). Le deuxième objectif consiste en la conception de commande d’une nouvelle structure d’éolienne à double rotor. L’originalité de cette structure réside dans le fait qu’elle peut pivoter face au vent sans actionneur dédié, et ce grâce à la rotation libre du bras portant les deux éoliennes. Deux architectures de commande sont proposées afin d’orienter la structure face au vent : l’une crée un différentiel des angles de calage des pales des deux éoliennes, l’autre agissant via la différence de puissance produite par les deux génératrices. Étant donné que l’environnement est incertain et fortement perturbé (variations du vent, erreurs de modélisation, bruits de mesure), des lois de commande non linéaires robustes sont proposées. L’efficacité des stratégies de commande a été vérifiée selon différents scénarios. / This work deals the nonlinear control of wind turbine structures. The first objective is the design of control laws of a standard wind turbine with variable speed-variable pitch angle. The proposed control strategies allow controlling the wind turbine indifferent operating areas (optimization and powerlimitation).The second objective consists in controlling a new structure of twin wind turbines. The originality of this structure lies in the fact that it can rotate face the wind without using a dedicated actuator, thanks to the free rotation of the arm carrying the wind turbines. Two control architectures are proposed in order to ensure the structure face the wind : pitch angles differential and the produced power difference. Given that the environment is uncertain (windvariations, modeling errors, noise), robust nonlinear control laws are proposed for a multiple objectives. The efficiency of the control strategies have been carried out according to several scenarios.
92

Detection and removal of wind turbine ice : Method review and a CFD simulation test

Bravo Jimenez, Ismael January 2018 (has links)
Nowadays, the energy sector is facing a huge demand that needs to be covered. Wind energy is one of the most promising energy resources as it is free from pollution, clean and probably will arise as one of the main energy sources to prevent global warming from happening. Almost 10% of the global energy demand is coming from renewable resources. By 2050 this percentage is expected to grow to 60%. Therefore, efforts on wind turbine technology (i.e. reliability, design…) need to be coped with this growth. Currently, large wind energy projects are usually carried out in higher altitudes and cold climates. This is because almost all of the cold climates worldwide offer profitable wind power resources and great wind energy potential. Operating with wind turbines in cold climates bring interesting advantages as a result of higher air density and consequently stronger winds (wind power is around 10% higher in the Nordic regions). Not only benefits can be obtained but extreme conditions force to follow harsh conditions. Low temperatures and ice accretion present an important issue to solve as can cause several problems in fatigue loads, the balance of the rotor and aerodynamics, safety risks, turbine performance, among others. As wind energy is growing steadily on icy climates is crucial that wind turbines can be managed efficiently and harmlessly during the time they operate. The collected data for the ice detection, de-icing and anti-icing systems parts was obtained through the company Arvato Bertelsmann and is also based on scientific papers. In addition, computer simulations were performed, involving the creation of a wind tunnel under certain conditions in order to be able to carry out the simulations (1st at 0ºC, 2nd at -10ºC) with the turbine blades rotating in cold regions as a standard operation. In this project, Computational Fluids Dynamics (CFD) simulation on a 5MW wind turbine prototype with ice accretion on the blades to study how CL and CD can change, also different measures of ice detection, deicing and anti-icing systems for avoiding ice accumulation will be discussed. Simulation results showed a logical correlation as expected, increasing the drag force about 5.7% and lowering the lift force 17,5% thus worsening the turbine's efficiency.
93

Aerodynamický návrh větrné turbíny pro zvolenou lokalitu / Aerodynamic design of wind turbine

Chromec, Tomáš January 2014 (has links)
This master‘s thesis focuses on wind turbines. The first part describes the basic attributes of wind energy and wind turbines and is accompanied by a many images. The next section is a statistical processing of measured meteorological data from measuring stations of the Czech Hydrometeorological Institute. These data are then used for calculations of the blades of wind turbines. The calculations are carried by two different methods. The first method is called the blade element momentum theory, the second method is the theory of blade cascade. Using these methods are obtained by two different blades. The last section compares the two blades in terms of geometric and performance.
94

EFFECTS OF INLET CONDITIONS, TURBINE DESIGN, AND NON-FLAT TOPOGRAPHY ON THE WAKE OF SCALED-DOWN WIND TURBINES

Diego Andres Siguenza Alvarado (16507221) 07 July 2023 (has links)
<p>This work is a five-article-based collection of published and to-be-published research articles that explore a novel combination of inlet conditions, wind turbine design, and non-flat topography by performing scaled-down experiments in a wind tunnel.</p>
95

Wind Flow Analysis and Modeling Power Generation for a Multiple Wind Turbine Installation

Buxamusa, Adnan January 2010 (has links)
No description available.
96

Non-model based adaptive control of renewable energy systems

Darabi Sahneh, Faryad January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Guoqiang Hu / In some types of renewable energy systems such as wind turbines or solar power plants, the optimal operating conditions are influenced by the intermittent nature of these energies. This fact, along with the modeling difficulties of such systems, provides incentive to look for non-model based adaptive techniques to address the maximum power point tracking (MPPT) problem. In this thesis, a novel extremum seeking algorithm is proposed for systems where the optimal point and the optimal value of the cost function are allowed to be time varying. A sinusoidal perturbation based technique is used to estimate the gradient of the cost function. Afterwards, a robust optimization method is developed to drive the system to its optimal point. Since this method does not require any knowledge about the dynamic system or the structure of the input-to-output mapping, it is considered to be a non-model based adaptive technique. The proposed method is then employed for maximizing the energy capture from the wind in a variable speed wind turbine. It is shown that without any measurements of wind velocity or power, the proposed method can drive the wind turbine to the optimal operating point. The generated power is observed to be very close to the maximum possible values.
97

Using super capacitors to interface a small wind turbine to a grid-tied micro-inverter

Eldridge, Christopher Sean January 1900 (has links)
Master of Science / Department of Electrical Engineering / William B. Kuhn / During the development of an educational renewable energy production platform, it was found that there were no low-cost, efficient grid-tie interfaces for a 160 W DC wind turbine. Typically, a small DC wind turbine is used in conjunction with a rechargeable battery bank or, if the wind turbine is directly interfaced with a grid-tie inverter, a regulator with a diversion-load. The use of batteries is undesirable due to their high-cost and high-maintenance characteristics. Diversion loads by nature waste power, as any excess energy that cannot be accepted by a battery or inverter is usually converted into heat through a resistive element. Initially, a 24 V DC, 160 W Air Breeze small wind turbine was directly connected to an Enphase Energy M190 grid-tie micro-inverter. The 24 V DC Air Breeze wind turbine is designed to charge a battery or bank of batteries while the M190 micro-inverter is designed to convert the DC output of a 200 W solar panel to grid-tied AC power. As expected, the power-production response time associated with the small wind turbine and the power-accepting, load-matching response time of the micro-inverter were not compatible. The rapidly changing power output of the small wind turbine conflicted with the slow response time of the micro-inverter resulting in little power production. Ultimately, the response time mismatch also produced sufficiently large voltage spikes to damage the turbine electronics. In this thesis, a solution for a low-cost, efficient grid-tie interface using no batteries and no diversion load is presented. A capacitance of eight Farads is placed in parallel with the small wind turbine and the micro inverter. The large capacitance sufficiently smoothes the potential abrupt voltage changes produced by the wind turbine, allowing the micro-inverter adequate time to adjust its load for optimal power conversion. Laboratory experiments and data from an implementation of such a parallel super capacitor wind turbine to grid-tie micro-inverter configuration are provided along with DC and AC power production monitoring circuits interfaced with a micro controller.
98

Internal Model Control (IMC) design for a stall-regulated variable-speed wind turbine system

Rosmin, Norzanah January 2015 (has links)
A stall-regulated wind turbine with fixed-speed operation provides a configuration which is one of the cheapest and simplest forms of wind generation and configurations. This type of turbine, however, is non-optimal at low winds, stresses the component structure and gives rise to significant power peaks during early stall conditions at high wind speeds. These problems can be overcome by having a properly designed generator speed control. Therefore, to track the maximum power locus curve at low winds, suppress the power peaks at medium winds, limit the power at a rated level at high winds and obtain a satisfactory power-wind speed curve performance (that closely resembles the ideal power-wind speed curve) with minimum stress torque simultaneously over the whole range of the wind speed variations, the availability of active control is vital. The main purpose of this study is to develop an internal model control (IMC) design for the squirrel-cage induction generator (SCIG), coupled with a full-rated power converter of a small (25 kW), stall-regulated, variable-speed wind-turbine (SRVSWT) system, which is subject to variations in the generator speed, electromagnetic torque and rotor flux. The study was done using simulations only. The objective of the controller was to optimise the generator speed to maximise the active power generated during the partial load region and maintain or restrict the generator speed to reduce/control the torque stress and the power-peaking between the partial and full load regions, before power was limited at the rated value of 25 kW at the full load region. The considered investigation involved estimating the proportional-integral (PI) and integral-proportional (IP) controllers parameter values used to track the stator-current producing torque, the rotor flux and the angular mechanical generator speed, before being used in the indirect vector control (IVC) and the sensorless indirect vector control (SLIVC) model algorithms of the SCIG system. The design of the PI and IP controllers was based on the fourth-order model of the SCIG, which is directly coupled to the full-rated power converter through the machine stator, whereas the machine rotor is connected to the turbine rotor via a gearbox. Both step and realistic wind speed profiles were considered. The IMC-based PI and IP controllers (IMC-PI-IP) tuning rule was proven to have smoothened the power curve and shown to give better estimation results compared to the IMC-based PI controllers (IMC-PI), Ziegler-Nichols (ZN) and Tyreus-Luyben (ZN) tuning rules. The findings also showed that for the SRVSWT system that employed the IVC model algorithm with the IMC-PI-IP tuning rule, considering the application of a maintained/constant speed (CS) strategy at the intermediate load region is more profitable than utilizing SRVSWT with the modified power tracking (MoPT) strategy. Besides that, the finding also suggested that, for the IMC-PI-IP approach, the IVC does provide better power tracking performance than the SLIVC model algorithm.
99

High fidelity micromechanics-based statistical analysis of composite material properties

Mustafa, Ghulam 08 April 2016 (has links)
Composite materials are being widely used in light weight structural applications due to their high specific stiffness and strength properties. However, predicting their mechanical behaviour accurately is a difficult task because of the complicated nature of these heterogeneous materials. This behaviour is not easily modeled with most of existing macro mechanics based models. Designers compensate for the model unknowns in failure predictions by generating overly conservative designs with relatively simple ply stacking sequences, thereby mitigating many of the benefits promised by composites. The research presented in this dissertation was undertaken with the primary goal of providing efficient methodologies for use in the design of composite structures considering inherent material variability and model shortcomings. A micromechanics based methodology is proposed to simulate stiffness, strength, and fatigue behaviour of composites. The computational micromechanics framework is based on the properties of the constituents of composite materials: the fiber, matrix and fiber/matrix interface. This model helps the designer to understand in-depth the failure modes in these materials and design efficient structures utilizing arbitrary layups with a reduced requirement for supporting experimental testing. The only limiting factor in using a micromechanics model is the challenge in obtaining the constituent properties. The overall novelty of this dissertation is to calibrate these constituent properties by integrating the micromechanics approach with a Bayesian statistical model. The early research explored the probabilistic aspects of the constituent properties to calculate the stiffness characteristics of a unidirectional lamina. Then these stochastic stiffness properties were considered as an input to analyze the wing box of a wind turbine blade. Results of this study gave a gateway to map constituent uncertainties to the top-level structure. Next, a stochastic first ply failure load method was developed based on micromechanics and Bayesian inference. Finally, probabilistic SN curves of composite materials were calculated after fatigue model parameter calibration using Bayesian inference. Throughout this research, extensive experimental data sets from literature have been used to calibrate and evaluate the proposed models. The micromechanics based probabilistic framework formulated here is quite general, and applied on the specific application of a wind turbine blade. The procedure may be easily generalized to deal with other structural applications such as storage tanks, pressure vessels, civil structural cladding, unmanned air vehicles, automotive bodies, etc. which can be explored in future work. / Graduate / 0548 / enginer315@gmail.com
100

Simulating Dynamical Behaviour of Wind Power Structures

Ahlström, Anders January 2002 (has links)
<p>The workin this thesis deals with the development of anaeroelastic simulation tool for horizontal axis wind turbineapplications.</p><p>Horizontal axiswind turbines can experience significanttime varying aerodynamic loads, potentially causing adverseeffects on structures, mechanical components, and powerproduction. The need of computational and experimentalprocedures for investigating aeroelastic stability and dynamicresponse have increased as wind turbines become lighter andmore flexible.</p><p>A finite element model for simulation of the dynamicresponse of horizontal axis wind turbines has been developed.The simulations are performed using the commercial finiteelement software SOLVIA, which is a program developed forgeneral analyses, linear as well as non-linear, static as wellas dynamic. The aerodynamic model, used to transform the windflow field to loads on the blades, is a Blade- Element/Momentummodel. The aerodynamic code is developed by FFA (TheAeronautical Research Institute of Sweden) and is astate-of-the-art code incorporating a number of extensions tothe Blade-Element/Momentum formulation. SOSIS-W, developed byTeknikgruppen AB was used to develop wind time series formodelling different wind conditions.</p><p>The model is rather general, and different configurations ofthe structural model and various type of wind conditions couldeasily be simulated. The model is primarily intended for use asa research tool when influences of specific dynamic effects areinvestigated.</p><p>Simulation results for the three-bladed wind turbine Danwin180 kW are presented as a verification example.</p><p><b>Keywords:</b>aeroelastic modelling, rotor aerodynamics,structural dynamics, wind turbine, AERFORCE, SOSIS-W,SOLVIA</p>

Page generated in 0.101 seconds