Spelling suggestions: "subject:"super capacitor"" "subject:"kuper capacitor""
1 |
Using super capacitors to interface a small wind turbine to a grid-tied micro-inverterEldridge, Christopher Sean January 1900 (has links)
Master of Science / Department of Electrical Engineering / William B. Kuhn / During the development of an educational renewable energy production platform, it was found that there were no low-cost, efficient grid-tie interfaces for a 160 W DC wind turbine. Typically, a small DC wind turbine is used in conjunction with a rechargeable battery bank or, if the wind turbine is directly interfaced with a grid-tie inverter, a regulator with a diversion-load. The use of batteries is undesirable due to their high-cost and high-maintenance characteristics. Diversion loads by nature waste power, as any excess energy that cannot be accepted by a battery or inverter is usually converted into heat through a resistive element.
Initially, a 24 V DC, 160 W Air Breeze small wind turbine was directly connected to an Enphase Energy M190 grid-tie micro-inverter. The 24 V DC Air Breeze wind turbine is designed to charge a battery or bank of batteries while the M190 micro-inverter is designed to convert the DC output of a 200 W solar panel to grid-tied AC power. As expected, the power-production response time associated with the small wind turbine and the power-accepting, load-matching response time of the micro-inverter were not compatible. The rapidly changing power output of the small wind turbine conflicted with the slow response time of the micro-inverter resulting in little power production. Ultimately, the response time mismatch also produced sufficiently large voltage spikes to damage the turbine electronics.
In this thesis, a solution for a low-cost, efficient grid-tie interface using no batteries and no diversion load is presented. A capacitance of eight Farads is placed in parallel with the small wind turbine and the micro inverter. The large capacitance sufficiently smoothes the potential abrupt voltage changes produced by the wind turbine, allowing the micro-inverter adequate time to adjust its load for optimal power conversion. Laboratory experiments and data from an implementation of such a parallel super capacitor wind turbine to grid-tie micro-inverter configuration are provided along with DC and AC power production monitoring circuits interfaced with a micro controller.
|
2 |
Storage System for Harvested Energy in IoT SensorsAlhuttaitawi, Saif January 2018 (has links)
This work presents an energy system design for wireless sensor networks (WSNs) after applying our design the WSN should theoretically have an infinite lifetime. Energy harvesting sources can provide suitable energy for WSN nodes and reduce their dependence on battery. In this project, an efficient energy harvesting and storage system is proposed. By using (two supercapacitors and four DC/DC converters with step up /step down capabilities) all of them controlled by Microcontroller via switches to consider the best way to save energy to keep the WSN alive as long as possible. The usage of supercapacitors as an energy buffer to supply the sensor components (microcontroller and radio) with energy it needs to work. We could control the energy flow according to a specific voltage levels in supercapacitors to guaranty the full functionality for WSN with minimizing the loss of energy, and that’s leads to long time life for the wireless sensor node WSN. Another important thing we find in our experiment that is the inner leakage of the supercapacitor and how it has a critical effect on how long it can serve our system with energy. This paper contains on two theoretical sections (Part one and part two) which are based on literature reviews, and one experimental section (Part three) based on experimental building the prototype, coding and testing.
|
3 |
FABRICATION AND CHARACTERIZATION OF ADVANCED MATERIALS AND COMPOSITES FOR ELECTROCHEMICAL SUPERCAPACITORSAta, Mustafa Sami 11 1900 (has links)
Electrochemical supercapacitors (ESs) have attracted great attention due to the advantages of long cycle life, high charge/discharge rate and high power density compared to batteries. Significant improvement in ES performance has been achieved via development of advanced nanostructured materials, such as MnO2 and composite MnO2-MWCNT and PPy-MWCNT electrodes.
In this dissertation, advanced dispersants were developed and investigated for the dispersion, surface modification and electrophoretic deposition (EPD) of metal oxides, multiwalled carbon nanotubes (MWCNT) and polypyrrole (PPy) in different solvents.
Nature-inspired strategies have been developed for the fabrication of MWCNT films and composites. The outstanding colloidal stability of MWCNT, dispersed using anionic bile acids, allowed the EPD of MWCNT. Composite MnO2-MWCNT films were obtained by anodic EPD on Ni plaque and Ni foam substrates. Good dispersion of MWCNT during Py polymerization was achieved and allowed the formation of PPy coated MWCNT. The film and bulk electrodes, prepared by EPD and slurry impregnation methods, respectively, showed high capacitance and good capacitance retention at high charge-discharge rates.
The mechanisms of dispersion and deposition were investigated. Cathodic and anodic EPD of MWCNT, MnO2, Mn3O4 was achieved using positively and negatively charged dispersants. Co-deposition of MWCNT and MnO2 was performed using a co-dispersant, which dispersed both MWCNT and MnO2 in ethanol. Composite films were tested for ES applications.
The efficient dispersion was achieved at relatively low dispersant concentrations due to strong adsorption of the dispersants on the particle surface, which involved the polydentate bonding. We found the possibility of efficient dispersion of MWCNT in ethanol using efficient anionic dispersants. The electrostatic assembly method has been developed, which offers the benefit of improved mixing of MnO2 and MWCNT. The use of different anionic and cationic dispersants allowed the fabrication of electrodes with enhanced capacitance and improved capacitance retention at high charge–discharge rates and high active mass loadings. The asymmetric devices, containing positive MnO2–MWCNT and negative AC–CB electrodes showed promising performance in a voltage window of 1.6 V.
We proposed another novel concept based on electrostatic heterocoagulation of Mn3O4- MWCNT composites in aqueous environment. In this case, various dispersants were selected for adsorption and dispersion of MWCNT and Mn3O4 and this allowed the formation of stable aqueous suspensions of positively charged MWCNT and negatively charged Mn3O4, which facilitated the formation of advanced composites with improved mixing of the components. Testing results showed promising performance of Mn3O4–MWCNT composites for applications in electrodes of electrochemical supercapacitors. / Thesis / Doctor of Philosophy (PhD)
|
4 |
Determining the voltage range of a carbon-based supercapacitorWells, Thomas January 2014 (has links)
The focus of this thesis has been to determine the usable voltage range of carbon-based supercapacitors (SC). Supercapacitors are a relatively new type of capacitors with a vast increase in capacitance compared to capacitors which utilize a dielectric as charge separator. A SC consists of two electrodes and an electrolyte separating the electrodes. The charges are stored by electrostatic forces in the interface between the electrode and the electrolyte, forming the so called electrochemical double-layer (EDL). With porous electrodes the effective surface area of the interfacial zone can be made very large, giving SCs a large storage capacity. The limiting factors of a SC is the decomposition potential of the electrolyte and the decomposition of the electrodes. For commercially manufactured SCs the electrolyte is usually an organic solvent, which has a decomposition potential of up to 2.7-2.8 V. Compared to aqueous electrolytes with a thermodynamic limit of 1.23 V. The drawback of using non-aqueous electrolytes is that they are not environmentally friendly, and they increase the production cost. It is claimed that the voltage range can be up to 1.9 V using aqueous electrolytes. Some researchers have focused on aqueous electrolytes for these reasons. In this thesis two different electrolytes were tested to determine if the voltage range could be extended. The experiments were conducted using a three electrode cell and performing cyclic voltammogram measurements (CV). The carbon electrodes were made of two different sources of grahite, battery graphite or exfoliated graphite, and nano fibrilated cellulose was added to increase the mechanical stability. The results show that the oxidation potential of the carbon electrode was the positive limit. A usable potential of about 1 V was shown. However, when cycling the electrodes to potentials below the decomposition limit, for hydrogen evolution, interesting effects were seen. A decrease in reaction kinetics, indicating a type of conditioning of the electrode was observed. An increase in charge storage capacitance was also observed when comparing the initial measurements with the final, probably corresponding to an increase in porosity. / KEPS projekt Sundsvall Mitt Universitet
|
5 |
Evaluation of the Current-Fed CLLC DC/DC Converters for Battery and Super-Capacitor Based Energy Storage Systems Used in Electrified TransportationBai, Yujie 03 December 2019 (has links)
No description available.
|
6 |
Efficiency Improvements with Super Capacitors in Mechatronic Systems / Regenerering i mekatroniska system med superkondensatorerSundberg, Nicklas January 2007 (has links)
The production industry is getting more and more automated and that implies higher energy consumption. With the increasing awareness of the earth limited resources and the increasing energy prices, energy conservation grows in relevance, both due to cost reduction and environmental benefits. One way to conserve energy is to optimize the energy usage within the business and reduce the losses. Regenerative braking is already in use today for this purpose in vehicles. The aim of this thesis is to investigate how regenerative braking can be fitted into the production industry and what adaptations need to be made. This thesis is based on an earlier study that has set up a mathematical model for energy regeneration in mechatronic systems and the goal of this thesis is to build a test rig and verify the correctness of these models. One suggested improvement to the automotive systems are the introduction of super capacitors as a secondary energy source because they can charge more rapidly compared to batteries which is required during the expected fast accelerations. In the performed tests an efficiency improvement of 10 % was shown. The earlier study however suggests an efficiency rate of 60% but those models do not include frictional nor electrical losses. The results are complemented by a discussion were a number of changes to the design is proposed. A different motor control system would significantly enhance the rig and a result more like the expected can be achieved. / Det ökade antalet elektromekaniska maskiner i industriella tillämpningar medför en ökad energianvändning. Då våra begränsade resurser mer och mer belyses i media och med stigande energipriser ökar intresset hos företagen för att minska sin energianvändning, dels för att reducera sina kostnader och dels för att minska den miljöbelastning slutprodukten medför. Ett sätt att göra detta är att minska energiförlusterna inom sin produktion. Regenerativ bromsning är en teknik som används i fordon idag och kan användas för detta syfte. Detta arbete ska undersöka hur sådan teknik kan användas i tillverkningsindustrin och vilka förändringar som måste göras. Ett tidigare arbete har satt upp teoretiska modeller för detta och det här arbetet syftar till att bygga en tesrigg för att praktiskt undersöka modellernas korrekthet. En förbättring mot det system som används i dagens bilar är att införa superkondensatorer som parallell energikälla då dessa är snabbare på att lagra energi än ett batteri och därför passar bättre för de snabba accelerationer och retardationer som förekommer i industriprocesser. De genomförda testerna påverkades negativt av vissa begränsningar i hårdvaran men resultatet visar ändå att regenereringen kan återföra 10 % av energin till kondensatorerna, det motsvarar däremot inte den mängden som de tidigare uppsatta modellerna förutspådde. Orsakerna är olika förluster i systemet som inte modellerna tar hänsyn till. De viktigaste förlustfaktorerna beror på friktion och styrningen av elektroniken. Med en annan typ av motorstyrning kan förlusterna minskas och ett resultat mer likt det förväntade uppnås.
|
7 |
Commande et supervision énergétique d’un générateur hybride actif éolien incluant du stockage sous forme d’hydrogène et des super-condensateurs pour l’intégration dans le système électrique d’un micro réseau / Control and energy management of a hybrid active wing generator including energy storage system with super-capacitors and hydrogen technologies for microgrid applicationZhou, Tao 30 June 2009 (has links)
Un système hybride multi-source est étudié dans cette thèse pour la génération dispersée basée sur des sources d’énergie renouvelable et des systèmes de stockage d’énergie. Il comprend un générateur éolien comme source d’énergie primaire, des super-condensateurs comme système de stockage à dynamique rapide, des piles à combustible et des électrolyseurs comme système de stockage sur le long terme sous forme d’hydrogène. Ils sont tous connectés à un bus continu commun et un onduleur est utilisé pour la connexion du système entier au réseau. Dans ce mémoire, nous avons présenté la modélisation du système, la conception du contrôle y compris des stratégies de répartition des flux de puissance et la gestion énergétique. Cette centrale hybride peut finalement générer des puissances lissées et contrôlables comme la plupart des générateurs classiques. Les performances ont été testées en simulation numérique et aussi sur un prototype expérimental. Les contributions scientifiques principales de cette thèse sont les suivantes : l’utilisation et l’adaptation des formalismes pour la modélisation des systèmes complexes et la conception de leur commande ; la conception et la réalisation expérimentale des émulateurs pour réduire le temps et le cout du développement du prototype expérimental ; la proposition et la validation de deux stratégies de gestion des puissances pour la régulation du bus continu et le contrôle des puissances transitées au réseau et enfin la proposition des stratégies de supervision énergétique avec la définition des modes de fonctionnement pour le générateur actif éolien afin d’assurer une disponibilité énergétique / A hybrid power system is studied in this thesis for the distributed generation based on renewable energy resources and energy storage systems in microgrid applications. It consists of a wind generator as primary energy source, super-capacitors as fast-dynamic storage system, fuel cells and electrolyzers as long-term storage system in hydrogen. They are all connected to a common DC bus and an inverter is used for the connection of the whole system to the grid. In this thesis, we have presented the system modeling, the control design including the power balancing and energy management strategies. This hybrid power system can finally supply controllable smooth powers as most conventional power plants. The performances have been tested in numerical simulations and also on an experimental test bench. As result, it is able to provide ancillary services to the microgrid. The main scientific contributions of this thesis are: the use and the adaptation of the graphical tools for the modeling of complex systems and their design; the design and the experimental implementation of real-time emulators in order to reduce the time and the cost of an experimental platform; the proposition and the validation of two power balancing strategies for the DC-bus voltage regulation and the grid power control and finally the proposition of energy management strategies for the active wind generator to ensure the energy availability
|
8 |
Akumulace energie z OZE / Accumulation of Energy from Renewable Energy SourcesHeller, Ondřej January 2010 (has links)
The objective of the first part of master’s thesis is mapping the potential of various types of renewable sources in Europe and Czech Republic, especially solar energy, wind energy, water energy and biomass. There are described principals and ways of energy generation from these sources, brief overview of current technologies, and also their advantages and limitations. An important part is electric supply continuity from renewable sources, there are large differences and the resulting to restrictions on construction and connecting the units to the power system. In this work there are mentioned some impacts on network and rates of change of supply, some sources are also evaluated in terms of maximum power, that can be connected to the power system in our country. The conclusion of the first part is dedicated to energy storage technologies, which are suitable and usable for renewable sources, there are described their principals, properties, status of development and types of aplications, in which these technologies are used. This chapter also focusses on the price level of each technology. The second part of the thesis deals with 1 MWp on-grid photovoltaic power plant design. This design includes also the redox flow batteries accumulation, the first variant calculates on 24-hour steady energy supply, the second optimalized variant calculates on daily energy supply. There are the accumulation system costs estimated and also the payback period for the both variants. Additionally there is also determined minimum penalization for cost-effective operation. The last part is dedicated to changes of impact on the local grid and changes of system impacts, after the accumulation system is installed.
|
Page generated in 0.0456 seconds