Spelling suggestions: "subject:"[een] X-RAY"" "subject:"[enn] X-RAY""
401 |
The Effect of Ionomer Architecture on the Morphology in Gel State Functionalized Sulfonated Syndiotactic PolystyreneFahs, Gregory Bain 04 March 2020 (has links)
This dissertation presents a discussion of blocky and randomly functionalized sulfonated syndiotactic polystyrene copolymers. These copolymers have been prepared over a range of functionalization (from 2% to 10%) in order to assess the effect of the incorporation of these polar side groups on both the thermal behavior and morphology of these polymer systems. The two different architectures are achieved by conducting the reaction in both the heterogeneous gel-state to obtain blocky copolymers and in the homogeneous solution state to obtain randomly functionalized copolymers. In order to compare both the thermal properties and morphology of these two systems several sets of samples were prepared at comparable levels of sulfonation. Thermal analysis of these two systems proved that the blocky functionalized copolymers provided superior properties with regard to the speed and total amount of the crystalline component of sulfonated syndiotactic polystyrene. Above 3% functionalizion the randomly functionalized copolymer was no longer able to crystallize, whereas, the blocky functionalized copolymer is able to crystallize even at a functionalization level of 10.5% sulfonate groups. When considering the morphology of these systems even at low percentages of sulfonation it is clear that the distribution of these groups is different based on the amplitude of the signal measured by small angle x-ray scattering. Additionally, methods were developed to describe both the distribution of ionic multiplets, which varies between blocky and randomly functionalized systems, but also the distribution of crystals. At a larger scale ultra-small angle x-ray scattering was employed to attempt to understand the clustering of ionic multiplets in these systems. Randomly functionalized polymers should a peak that is attributed to ion clusters, whereas blocky polymers show no such peak. Additional studies have also been done to look at the analysis of crystallite sizes in these systems when there are multiplet polymorphs present, it was observed the polymorphic composition is drastically different. All of these studies support that these systems bear vastly different thermal behavior and possess significantly different morphologies. This supports the hypothesis that this gel-state heterogeneous functionalization procedure produces a much different chain architecture compared to homogeneous functionalization in the solution-state. / Doctor of Philosophy / Polymers are a class of chemicals that are defined by having a very large set of molecules that are chemically linked together where each unit (monomer) is repeated within the chemical structure. In particular, this dissertation focuses on the construction what are termed as "blocky" copolymers, which are defined by having two chemically different monomers that are incorporated in the polymer chain. The "blocky" characteristic of these polymers means that these two different monomers are physically segregated from each other on the polymer chain, where long portions of the chain that are of one type, followed by another section of the polymer that has the other type of monomer. The goal of creating this type of structure is to try to take advantage of the properties of both types of monomers, which can create materials with superior synergistic properties. In this case a hydrophobic (water hating) monomer is combined with a hydrophilic (water loving) chain. This hydrophobic component in the polymer is able to crystallize, which provides mechanical and thermal stability in the material by acting as a physical tether to hold neighboring chains together. With the other set of hydrophilic monomers, which in this case have an ionic component incorporated, we can now take advantage of this chemical components ability to aide in the transportation of ions. Transportation of ions is useful in a variety of commercially relevant applications, two of the most important applications of these ionic materials is in membranes that can be used to purify water or membrane materials in fuel cell technologies, specifically for proton exchange membranes. The focus of this research in particular was to create a simple synthesis technique that can create these blocky polymer chain architectures, which is done by performing the reaction while the polymer is made into a gel. The key to this is that the crystals within the gel act as a barrier to chemical reactions, creating conditions where we have substantial portions of the material that are able to be functionalized and the crystals within the material that are protected from being functionalized. By looking at the thermal characteristics, such as melting temperatures and amount of crystals within these systems we have seen that functionalizing these polymers in the heterogeneous gel state gives substantially better properties than functionalizing these materials randomly. Much like oil and water, incompatible polymer chains will phase separate from each other. In this case the hydrophobic and ionic components will phase separate from each other. The shape and distribution of these phase separated structure will dictate many of the material properties, which can be described by modeling the data collected from x-ray scattering experiments. All of this information will tell us based on the initial conditions that these polymers were created in, what properties should be expected based on the morphology and thermal behavior. This gives a better understanding of how to fine tune these properties based on the structure of the gel and chemical reaction conditions.
|
402 |
A structural investigation of some compounds showing charge-transfer propertiesMurray-Rust, Peter January 1967 (has links)
The technique of X-ray diffraction has been used to investigate compounds which show charge-transfer properties in the solid state. It is shown how the results of structure determination can, under favourable conditions, give information about charge-transfer processes. Two sets of compounds have been studied, both of which contain metal-chloride bonds. The first is a series of mixed-valence cobalt hexammine chlorocuprates in which the average oxidation state of the copper can take any value between 1 and 2. The structure of the single-valence (copper (I)) compound, [Co(NH<sub>3</sub>)<sub>6</sub>]<sub>4</sub>Cu<sub>5</sub>Cl<sub>17</sub> was solved and data was also collected for a compound with Cu(I)/total Cu ~ 0.25. This was shown to have a structure to the single-valence copper (I) and copper (II) compounds and probable arrangements for the Cu(I) and Cu(II) ions are presented. It is shown that linear Cu-Cl-Cu bridges are almost certainly present and that these can account for the charge-transfer spectrum. A new chlorocuprate anion, [Cu<sub>5</sub>Cl</sub>16</sub>]<sup>11-</sup> was discovered, which has 23(T) symmetry.
|
403 |
Trace element analysis of powdered beverages and other materials by x-ray flourescence [sic]Dellai, Cheryl K January 2011 (has links)
Digitized by Kansas Correctional Industries
|
404 |
Small angle x-ray scattering from thin platesDeltenre, Ralph Wayne. January 1956 (has links)
Call number: LD2668 .T4 1956 D45 / Master of Science
|
405 |
Grundämnes-distribuering och bendensitet : En XRF-undersökning av vikingatida och medeltida lårben från fyra arkeologiska lokaler / Elemental Distribution and Bone Density : an Analysis with μXRF-spectroscopy of Femur from four Archaeological Sites in Sweden dated Viking Age – Middle AgesYtterman, Caroline January 2014 (has links)
This essay focuses on developing non-destructive methods to investigate the relationship between elemental distribution and bone porosity in archaeological bone. The skeletal material, which was analyzed, came from the archaeological sites of Skara (county of Västergötland), Varnhem (county of Västergötland), Sigtuna (county of Uppland) and Kopparsvik (county of Gotland). The essay is based on the results of a previous project, Osteoporosis och osteoarthritis, då och nu (Sten 2012). That project aimed at establishing whether medieval people, buried on the above mentioned archaeological sites, were suffersing from osteoporosis and/or osteoarthritis. This knowledge might help the medical research of today to solve the problem of possibly preventing those bone diseases. The method used was DXA-scanning, which was developed for examine osteoporosis in bone from living people. The result showed that the skeletons from the Skara site had an increased bone mineral density (BMD) compared to the skeletons from the other three sites. This essay investigates why these skeletal remains have a higher BMD and how this affects the results of methods like DXA. In this bachelor project various X-ray instruments were used to analyze the BMD of the skeletal remains. The X-ray pictures were then modified to exhibit high and low density areas in the bone. The elemental distribution of the surface area of the neck of the femur was examined with a μXRF-spectrometer. As a complement to the μXRF-spectrometer a SEM (scanning electron microscope) was used to analyze the elemental distribution of a cross section of the femur neck. Soil samples were collected from Skara and Varnhem and analyzed by using μXRF-spectrometry to find out if there was a correlation between the elemental content of the bone and surrounding soil. The skeletal remains from Skara exhibited increased values of iron and manganese combined with higher bone density. The soil from Skara showed a high level of particularly iron. This could be the reason for the increased BMD of the individuals from Skara when using the DXA-analysis. It is likely that, in each archaeological site, iron and manganese ions have diffused from both ground water and soil into the bones and thus increased the BMD. This is especially notified of the skeletal remains of Skara.
|
406 |
Neutron, X-ray, and optical studies of multiferroic materialsHearmon, Alexander J. January 2013 (has links)
Developing a greater understanding of multiferroic materials, particularly those in which a strong coupling is exhibited between magnetic and electrical orderings, is of great importance if potential applications are to be realised. This thesis reports new experimental findings on several multiferroics using the techniques of X-ray and neutron diffraction together with nonlinear optical experiments. Spherical neutron polarimetry measurements on RbFe(MoO<sub<4</sub>)<sub>2</sub> show how this system's chiral magnetic structure can be controlled by an external electric field. Consideration is given to the axial distortion that the crystal structure makes, and the effect that this has on the stabilised magnetic structures. A ferroaxial coupling is invoked to explain, from a symmetry point of view, the spin driven multiferroicity in this proper screw system. The charge ordering in YbFe<sub>2</sub>O<sub>4</sub> is examined by a detailed imaging of reciprocal space measured by elastic X-ray diffraction. Continuous helices of scattering are observed above the three-dimensional ordering transition temperature, whereas the intensity is concentrated onto separated maxima below this. The low temperature data are modelled using a simple oxygen displacement pattern, generalised to an incommensurate structure. The observed incommensurability implies that YbFe<sub>2</sub>O<sub>4</sub> cannot be truly ferroelectric. The low field magnetic structures of a Y-type hexaferrite Ba<sub>0.5</sub>Sr<sub>1.5</sub>Zn<sub>2</sub>Fe<sub>12</sub>O<sub>22</sub> are observed in a resonant soft X-ray diffraction study. In zero field the system is helimagnetic, and with small applied fields peaks corresponding to a new phase appear. Energy calculations are used to suggest a suitable magnetic structure for the new phase and to show how this relates to the known commensurate phases that are present in low fields. Finally, an experimental setup designed to measure second harmonic generation from non-centrosymmetric crystals is presented, along with static measurements on the multiferroic system MnWO<sub>4</sub>. An optical pump / second harmonic probe study is then undertaken, with the result that a pump induced enhancement in the efficiency of the second harmonic generation is observed.
|
407 |
Structural, functional and evolutionary studies on prolyl-hydroxylasesScotti, John Salvatore January 2014 (has links)
This thesis studies the prolyl-hydroxylase family of 2-oxoglutarate dependent oxygenases from structural, functional and evolutionary perspectives. The role of prolyl-hydroxylation was first identified in collagen, wherein hydroxyproline was found to stabilise the collagen triple helix. In the 1960s, the presence of hydroxyproline in collagen was found to be a result of enzyme catalysed protein modification. An enzyme, now known as collagen prolyl-4-hydroxylase (CP4H), was found to be completely dependent on Fe(II), 2-oxoglutarate (2OG) and molecular oxygen for catalysis, and was the inaugural member of enzyme family known as the Fe(II) and 2OG-dependent oxygenases (2OG oxygenases), the members of which have since expanded dramatically – more than 60 2OG oxygenases are predicted to exist in humans alone. It was not until the 21st century that hydroxyproline was found to play roles in human biology beyond its well-characterised role in collagen stabilisation. In animals, cells adapt to low oxygen conditions (hypoxia) via the upregulation of hundreds of target genes as governed by the hypoxia-inducible transcription factor (HIF). The mammalian hypoxic sensing system was discovered to be regulated by a conserved family of hypoxia-inducible factor prolyl-hydroxylases (PHDs or EGLNs), which catalyse the prolyl-4-hydroxylation of a conserved proline residue in HIF-α under normoxic conditions, so targeting HIF-α for proteasomal degradation via the von Hippel-Lindau (pVHL) E3 ubiquitin ligase pathway. As a result, the PHDs are current therapeutic targets for the treatment of anemia and ischemia-related diseases. Thus, hydroxyproline also plays a critical role in mammalian oxygen sensing. However, the discovery also raised the question of the evolutionary origin of these enzymes and what roles, if any, they may play in other organisms. This thesis begins by describing the identification and biochemical characterisation of the first homologue of the human PHDs in prokaryotes, specifically, in Pseudomonas species, which contains pathogens such as P. aeruginosa. Pseudomonas PHD (PPHD) was discovered to catalyse the prolyl-hydroxylation of a conserved region of elongation factor Tu (EF-Tu), a translational GTPase universally conserved in prokaryotes and known for its critical role in bacterial translation. A crystal structure of PPHD, the first of a prokaryotic prolyl-hydroxylase, was then determined, revealing a striking structural homology of PPHD to the human PHDs. The further determination of crystal structures of Pseudomonas EF-Tu and a PPHD:EF-Tu protein-protein complex, the first of any 2OG oxygenase in complex with its full-length protein substrate, provides important insights into the substrate recognition mechanisms of both the CP4Hs and the PHDs and reveals an evolutionarily conserved pathway of substrate recognition that extends to prokaryotes and will be useful in the design of selective inhibitors of the PHDs. Differences were investigated between the PHDs and a recently discovered subfamily of eukaryotic prolyl-3-hydroxylases, which catalyse the hydroxylation of a conserved proline residue in the small ribosomal subunit S23 (RPS23) and have been implicated in translation accuracy and the stress response. Crystal structures of the RPS23 hydroxylases human OGFOD1 and yeast Tpa1 in complex with 2OG-mimetic inhibitors provide insight into their evolutionary origins. Analyses of the structures will be useful for targeting either OGFOD1 or the PHDs for human therapy. The thesis then describes work on human CP4H, a 240 kDa α2β2 heterotetramer. A novel expression and purification protocol is described for the CP4H complex in addition to the first known reports of its crystallisation and diffraction. Further, the foundations of a high-throughput inhibition assay of the human CP4Hs is presented and will be of immediate interest for assaying inhibitors of the human PHDs in clinical trials, some of which are also predicted to inhibit the CP4Hs. In closing, the thesis attempts to synthesise the results presented in order to provide further insight into the question of the ancestral origins of the prolyl-hydroxylases, a family of enzymes whose range of functions and biological roles likely will continue to expand.
|
408 |
Coordination chemistry of the pyridyl, naphthyridyl and [alpha], [omega]-polyether phosphine ligands and x-ray crystal structures andspectroscopic properties of the metal complex derivativesChan, Wing-han, 陳詠嫻 January 1998 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
409 |
Search for quasisoft X-ray sources in the Galactic centerLi, To, 李韜 January 2007 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy
|
410 |
Tailoring the mesomorphic structure and crystalline morphology via molecular architecture and specific interactions: from small molecules to long chainsGearba, Raluca Ioana 12 July 2005 (has links)
Liquid crystalline materials forming columnar mesophases are of importance for both the fundamental research and technological applications due to their supramolecular architecture allowing for one-dimensional charge transport. The potential applications of these materials include light emitting diodes, solar cells, field effect transistors and photovoltaic cells. However, to design a LC material suitable for a particular application, a fundamental understanding of the structure-property relationships is needed.
In the present thesis, a variety of systems forming columnar mesophases have been explored. They include small molecular weight compounds (triphenylene, phthalocyanine derivatives and star-shaped mesogens) and polymer materials. The research was focused on the study of the influence of the molecular architecture and specific interactions such as hydrogen bonding on the supramolecular organization in the mesophase, as well as on the influence of columnar mesophase on crystal growth. The main results of the thesis are summarized below.
The influence of hydrogen bonding on the structure and charge carrier mobility was investigated for a triphenylene derivative, hexaazatriphenylene, having lateral alkyl chains linked to the core via amide groups. These linking groups provide the possibility to form inter- and intra-molecular hydrogen bonds. Acting as “clamps”, the inter-molecular hydrogen bonds are found to enforce the attractive interactions between the molecules in the column. Thus, the columnar mesophase formed by this system is characterized by the smallest inter-disk distance ever found in columnar mesophases (3.18 Å). The improved intra-columnar order brings about a higher charge carrier mobility (0.02 cm2/Vs) as compared to other triphenylene derivatives without hydrogen bonds.
Phthalocyanine derivatives, which are liquid crystalline at ambient temperature, could be suitable for opto-electronic applications due to their improved processibility and self-healing of structural defects. Our interest in these systems was inspired by the fact that, in spite of numerous studies performed to date, only very a few phthalocyanine derivatives were found to exhibit columnar mesophases at ambient temperature. We observed that by introducing branches in alkyl chains close to the core, we were able to render the material LC at ambient temperature. Analysis of X-ray diffraction patterns measured on oriented samples showed that these systems form hexagonal and rectangular ordered columnar mesophases. This finding is in contradiction with the general view stating that non-hexagonal mesophases can be only disordered. Since the absolute majority of applications require fabrication of films, it was very important to achieve the visualization of the organization of the phthalocyanine derivatives at the nanometer scale. AFM images on thick spin-coated films with columnar resolution are presented for the first time. They allowed the examination of columnar curvatures and breaks at the boundaries between different single crystal-like domains.
The possibility of templating columnar crystal growth was studied for a star-shaped mesogen using a combination of direct- and reciprocal-space techniques. AFM images with columnar resolution showed that the crystal growth initiated in the monotropic columnar mesophase occurs almost in register with the mesomorphic template. In the final crystalline structure, the placement of the crystalline columns is controlled by the mesomorphic tracks at the scale of an individual column, i.e. at the scale of approximately 3.5 nm.
The mesophase-assisted crystallization was also studied for the case of a polymer material forming columnar mesophase, poly(di-n-propylsiloxane). X-ray diffraction on oriented fibers allowed us to correct the previous indexation and solve the structure of the unit cell. The crystallization process was studied on samples crystallized in different conditions. It was found that, depending on crystallization conditions, both folded-chain and extended-chain crystals can be obtained. Thus, crystallization of the material from the mesophase results in the formation of 100-150nm thick crystals, which corresponds to a nearly extended-chain conformation. By contrast, when crystallized from a dilute solution, folded-chain crystals result. The mechanisms of chain unfolding was studied by variable temperature atomic force microscopy on PDPS single crystals. It was found that crystals rapidly thicken above the initial melting point, up to 80 nm.
|
Page generated in 0.0394 seconds