• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] A NEURAL NETWORK FOR ONLINE PORTFOLIO SELECTION WITH SIDE INFORMATION / [pt] UMA REDE NEURAL PARA O PROBLEMA DE SELEÇÃO ONLINE DE PORTFÓLIO COM INFORMAÇÃO LATERAL

GUILHERME AUGUSTO SCHUTZ 15 January 2019 (has links)
[pt] O mercado financeiro é essencial na economia, trazendo estabilidade, acesso a novos tipos de investimentos, e aumentando a capacidade das empresas no acesso ao crédito. A constante busca por reduzir o papel de especialistas humanos na tomada de decisão, visa reduzir o risco inerente as emoções intrínsecas do ser humano, do qual a máquina não compartilha. Como consequência, reduzindo efeitos especulativos no mercado, e aumentando a precisão nas decisões tomadas. Neste trabalho é discutido o problema de seleção de portfólios online, onde um vetor de alocações de ativos é requerido em cada passo. O algoritmo proposto é o multilayer perceptron with side information - MLPi. Este algoritmo utiliza redes neurais para a solução do problema quando o investidor tem acesso a informações futuras sobre o preço dos ativos. Para avaliar o uso da informação lateral na seleção de portfolio, testamos empiricamente o MLPi em contraste com dois algoritmos, um baseline e o estado-da-arte. Como baseline é utilizado o buy-and-hold. O estado-da-arte é o algoritmo online moving average mean reversion proposto por Li e Hoi (2012). Para avaliar a utilização de informação lateral no algoritmo MLPi é definido um benchmark baseado numa solução ótima simples utilizando a informação lateral, mas sem considerar a acurácia da informação futura. Para os experimentos, utilizamos informações a nível de minuto do mercado de ações brasileiro, operados na bolsa de valores B3. É simulado um preditor de preço com 7 níveis de acurácia diferentes para 200 portfólios. Os resultados apontam que tanto o benchmark quanto o MLPi superam os dois algoritmos selecionados, para níveis de acurácia de um ativo maiores que 50 por cento, e na média, o MLPi supera o benchmark em todos os níveis de acurácia simulados. / [en] The financial market is essential in the economy, bringing stability, access to new types of investments, and increasing the ability of companies to access credit. The constant search for reducing the role of human specialists in decision making aims to reduce the risk inherent in the intrinsic emotions of the human being, which the machine does not share. As a consequence, reducing speculative effects in the market, and increasing the precision in the decisions taken. In this paper, we discuss the problem of selecting portfolios online, where a vector of asset allocations is required in each step. The proposed algorithm is the multilayer perceptron with side information - MLPi. This algorithm uses neural networks to solve the problem when the investor has access to future information on the price of the assets. To evaluate the use of side information in portfolio selection, we empirically tested MLPi in contrast to two algorithms, a baseline and the state-of-the-art. As a baseline, buy-andhold is used. The state-of-the-art is the online moving average mean reversion algorithm proposed by Li and Hoi (2012). To evaluate the use of side information in the algorithm MLPi a benchmark based on a simple optimal solution using the side information is defined, but without considering the accuracy of the future information. For the experiments, we use minute-level information from the Brazilian stock market, traded on the B3 stock exchange. A price predictor is simulated with 7 different accuracy levels for 200 portfolios. The results show that both the benchmark and MLPi outperform the two algorithms selected, for asset accuracy levels greater than 50 percent, and on average, MLPi outperforms the benchmark at all levels of simulated accuracy.

Page generated in 0.058 seconds