• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] THE BOOSTING AT START ALGORITHM AND ITS APPLICATIONS / [pt] O ALGORITMO BOOSTING AT START E SUAS APLICACOES

JULIO CESAR DUARTE 15 September 2017 (has links)
[pt] Boosting é uma técnica de aprendizado de máquina que combina diversos classificadores fracos com o objetivo de melhorar a acurácia geral. Em cada iteração, o algoritmo atualiza os pesos dos exemplos e constrói um classificador adicional. Um esquema simples de votação é utilizado para combinar os classificadores. O algoritmo mais famoso baseado em Boosting é o AdaBoost. Este algoritmo aumenta os pesos dos exemplos em que os classificadores anteriores cometeram erros. Assim, foca o classificador adicional nos exemplos mais difíceis. Inicialmente, uma distribuição uniforme de pesos é atribúda aos exemplos. Entretanto, não existe garantia que essa seja a melhor escolha para a distribuição inicial. Neste trabalho, apresentamos o Boosting at Start (BAS), uma nova abordagem de aprendizado de máquina baseada em Boosting. O BAS generaliza o AdaBoost permitindo a utilização de uma distribuição inicial arbitrária. Também apresentamos esquemas para determinação de tal distribuição. Além disso, mostramos como adaptar o BAS para esquemas de Aprendizado Semi-supervisionado. Adicionalmente, descrevemos a aplicação do BAS em diferentes problemas de classificação de dados e de texto, comparando o seu desempenho com o algoritmo AdaBoost original e alguns algoritmos do estado-da-arte para tais tarefas. Os resultados experimentais indicam que uma modelagem simples usando o algoritmo BAS gera classificadores eficazes. / [en] Boosting is a Machine Learning technique that combines several weak classifers with the goal of improving the overall accuracy. In each iteration, the algorithm updates the example weights and builds an additional classifer. A simple voting scheme is used to combine the classifers. The most famous Boosting-based algorithm is AdaBoost. This algorithm increases the weights of the examples that were misclassifed by the previous classifers. Thus, it focuses the additional classifer on the hardest examples. Initially, an uniform weight distribution is assigned to the examples. However, there is no guarantee that this is the best choice for the initial distribution. In this work, we present Boosting at Start (BAS), a new Machine Learning approach based on Boosting. BAS generalizes AdaBoost by allowing the use of an arbitrary initial distribution. We present schemes for the determination of such distribution. We also show how to adapt BAS to Semi-supervised learning schemes. Additionally, we describe the application of BAS in different problems of data and text classifcation, comparing its performance with the original AdaBoost algorithm and some state-of-the-art algorithms for such tasks. The experimental results indicate that a simple modelling using the BAS algorithm generates effective classifers.
2

[en] USING MACHINE LEARNING TO BUILD A TOOL THAT HELPS COMMENTS MODERATION / [pt] UTILIZANDO APRENDIZADO DE MÁQUINA PARA CONSTRUÇÃO DE UMA FERRAMENTA DE APOIO A MODERAÇÃO DE COMENTÁRIOS

SILVANO NOGUEIRA BUBACK 05 March 2012 (has links)
[pt] Uma das mudanças trazidas pela Web 2.0 é a maior participação dos usuários na produção do conteúdo, através de opiniões em redes sociais ou comentários nos próprios sites de produtos e serviços. Estes comentários são muito valiosos para seus sites pois fornecem feedback e incentivam a participação e divulgação do conteúdo. Porém excessos podem ocorrer através de comentários com palavrões indesejados ou spam. Enquanto para alguns sites a própria moderação da comunidade é suficiente, para outros as mensagens indesejadas podem comprometer o serviço. Para auxiliar na moderação dos comentários foi construída uma ferramenta que utiliza técnicas de aprendizado de máquina para auxiliar o moderador. Para testar os resultados, dois corpora de comentários produzidos na Globo.com foram utilizados, o primeiro com 657.405 comentários postados diretamente no site, e outro com 451.209 mensagens capturadas do Twitter. Nossos experimentos mostraram que o melhor resultado é obtido quando se separa o aprendizado dos comentários de acordo com o tema sobre o qual está sendo comentado. / [en] One of the main changes brought by Web 2.0 is the increase of user participation in content generation mainly in social networks and comments in news and service sites. These comments are valuable to the sites because they bring feedback and motivate other people to participate and to spread the content. On the other hand these comments also bring some kind of abuse as bad words and spam. While for some sites their own community moderation is enough, for others this impropriate content may compromise its content. In order to help theses sites, a tool that uses machine learning techniques was built to mediate comments. As a test to compare results, two datasets captured from Globo.com were used: the first one with 657.405 comments posted through its site and the second with 451.209 messages captured from Twitter. Our experiments show that best result is achieved when comment learning is done according to the subject that is being commented.
3

[en] BOOSTING FOR RECOMMENDATION SYSTEMS / [pt] BOOSTING PARA SISTEMAS DE RECOMENDAÇÃO

TULIO JORGE DE A N DE S ANIBOLETE 02 April 2009 (has links)
[pt] Com a quantidade de informação e sua disponibilidade facilitada pelo uso da Internet, diversas opções são oferecidas às pessoas e estas, normalmente, possuem pouca ou quase nenhuma experiência para decidir dentre as alternativas existentes. Neste âmbito, os Sistemas de Recomendação surgem para organizar e recomendar automaticamente, através de Aprendizado de Máquina, itens interessantes aos usuários. Um dos grandes desafios deste tipo de sistema é realizar o casamento correto entre o que está sendo recomendado e aqueles que estão recebendo a recomendação. Este trabalho aborda um Sistema de Recomendação baseado em Filtragem Colaborativa, técnica cuja essência está na troca de experiências entre usuários com interesses comuns. Na Filtragem Colaborativa, os usuários pontuam cada item experimentado de forma a indicar sua relevância, permitindo que outros do mesmo grupo se beneficiem destas pontuações. Nosso objetivo é utilizar um algoritmo de Boosting para otimizar a performance dos Sistemas de Recomendação. Para isto, utilizamos uma base de dados de anúncios com fins de validação e uma base de dados de filmes com fins de teste. Após adaptações nas estratégias convencionais de Boosting, alcançamos melhorias de até 3% sobre a performance do algoritmo original. / [en] With the amount of information and its easy availability on the Internet, many options are offered to the people and they, normally, have little or almost no experience to decide between the existing alternatives. In this scene, the Recommendation Systems appear to organize and recommend automatically, through Machine Learning, the interesting items. One of the great recommendation challenges is to match correctly what is being recommended and who are receiving the recommendation. This work presents a Recommendation System based on Collaborative Filtering, technique whose essence is the exchange of experiences between users with common interests. In Collaborative Filtering, users rate each experimented item indicating its relevance allowing the use of ratings by other users of the same group. Our objective is to implement a Boosting algorithm in order to optimize a Recommendation System performance. For this, we use a database of advertisements with validation purposes and a database of movies with testing purposes. After adaptations in the conventional Boosting strategies, improvements of 3% were reached over the original algorithm.
4

[en] MACHINE LEARNING METHODS APPLIED TO PREDICTIVE MODELS OF CHURN FOR LIFE INSURANCE / [pt] MÉTODOS DE MACHINE LEARNING APLICADOS À MODELAGEM PREDITIVA DE CANCELAMENTOS DE CLIENTES PARA SEGUROS DE VIDA

THAIS TUYANE DE AZEVEDO 26 September 2018 (has links)
[pt] O objetivo deste estudo foi explorar o problema de churn em seguros de vida, no sentido de prever se o cliente irá cancelar o produto nos próximos 6 meses. Atualmente, métodos de machine learning vêm se popularizando para este tipo de análise, tornando-se uma alternativa ao tradicional método de modelagem da probabilidade de cancelamento através da regressão logística. Em geral, um dos desafios encontrados neste tipo de modelagem é que a proporção de clientes que cancelam o serviço é relativamente pequena. Para isso, este estudo recorreu a técnicas de balanceamento para tratar a base naturalmente desbalanceada – técnicas de undersampling, oversampling e diferentes combinações destas duas foram utilizadas e comparadas entre si. As bases foram utilizadas para treinar modelos de Bagging, Random Forest e Boosting, e seus resultados foram comparados entre si e também aos resultados obtidos através do modelo de Regressão Logística. Observamos que a técnica SMOTE-modificado para balanceamento da base, aplicada ao modelo de Bagging, foi a combinação que apresentou melhores resultados dentre as combinações exploradas. / [en] The purpose of this study is to explore the churn problem in life insurance, in the sense of predicting if the client will cancel the product in the next 6 months. Currently, machine learning methods are becoming popular in this type of analysis, turning it into an alternative to the traditional method of modeling the probability of cancellation through logistics regression. In general, one of the challenges found in this type of modelling is that the proportion of clients who cancelled the service is relatively small. For this, the study resorted to balancing techniques to treat the naturally unbalanced base – under-sampling and over-sampling techniques and different combinations of these two were used and compared among each other. The bases were used to train models of Bagging, Random Forest and Boosting, and its results were compared among each other and to the results obtained through the Logistics Regression model. We observed that the modified SMOTE technique to balance the base, applied to the Bagging model, was the combination that presented the best results among the explored combinations.

Page generated in 0.0529 seconds