1 |
[en] NUMERICAL ANALYSIS OF NON-ISOTHERMAL EVAPORATION IN THE PRESENCE OF NATURAL CONVECTION / [pt] ANÁLISE NUMÉRICA DE EVAPORAÇÃO NÃO ISOTÉRMICA EM PRESENÇA DE CONVECÇÃO NATURALALFREDO CRUZ JUNIOR 14 March 2018 (has links)
[pt] Neste trabalho é feita uma análise teórica e numérica da evaporação não isotérmica de um líquido contido em um recipiente cilíndrico parcialmente cheio, com paredes adiabáticas. Postula-se que a evaporação acontece em presença de convecção natural impulsionada por diferenças de massa específica, associadas com gradientes de temperatura e composição da mistura. Esta consiste de um gás e o vapor do líquido. Embora a formulação seja geral, o presente trabalho focaliza a evaporação de água para o ar. Estudou-se três situações. Um caso isotérmico, variante do clássico problema de difusão de Stefan, um Caso em que a temperatura do líquido é maior do que a temperatura ambiente e um terceiro caso no qual a temperatura do líquido é menor do que a do ambiente. Duas diferentes condições de contorno foram usadas na abertura do recipiente de modo a explorar a sensibilidade do escoamento às condições no topo. A distância entre a superfície do líquido e o topo variou de duas a dez vezes o raio do recipiente. Duas diferenças de
temperatura entre o líquido e o ambiente foram investigadas, 3 graus Celsius e - 2 graus Celsius. O ar ambiente foi considerado como sendo muito seco ou muito úmido. Encontrou-se que, quando a temperatura do líquido é maior do que a temperatura ambiente, a taxa de evaporação alcança valores até quatro vezes maiores do que para o caso isotérmico. Para o caso em que a temperatura do líquido é
menor do que a temperatura ambiente, a taxa de evaporação decresce para valores até duas vezes menores do que para o caso isotérmico. / [en] This work reports a theoretical and numerical analysis of the non-isothermal evaporation of a liquid contained in a partially filled cylinder vessel, with adiabatic walls. It is assumed that the evaporation occurs in the presence of natural convection driven by differences in specific mass associated with gradient of temperature and mixture composition. The mixture consist of a gas and the vapor of the evaporating liquid. Although the formulation is general, the specific focus of the present work is on the evaporation of water into air. Three situations were studied. An isothermal case, which is a variant of the classical Stefan diffusion problem, a case where the liquid temperature is higher than the ambient temperature, and a third case in which the liquid temperature is lower than the ambient. Two different boundary conditions were used at the openning of the vessel in a way to explore the sensitivity of the flow to the conditions on the top. The distance between the liquid surface and the top of the vessel varied from two to ten times the vessel radius. Two temperature differences between the liquid and the ambient were investigated, 3 degrees Celsius and - 2 degrees Celsius. The environmental air was considered to be either very dry or very wet. It was found that, when the liquid temperature is higher than the ambient temperature, the rate of evaporation can reach values up to four times larges than that for the isothermal case. For the case where the liquid temperature. is lower than the ambient temperature, the rate of evaporation decreases to values down to half of theisothermal case.
|
2 |
[en] INITIAL VALUE METHOD FOR THE SOLUTION OF NON-SIMILAR BOUNDARY LAYERS APPLIED TO A WEDGE IN MEXED CONVECTION / [pt] MÉTODO DE VARREDURA DE VALORES INICIAIS PARA A SOLUÇÃO DE PROBLEMAS NÃO SIMILARES DE CAMADA DE LIMITE APLICADO A UMA CUNHA EM CONVECÇÃO MISTAJOSE VIRIATO COELHO VARGAS 04 June 2012 (has links)
[pt] O presente trabalho apresenta o método de varredura de valores iniciais para a solução de problemas não-similares de camada limite, aplicado a uma cunha em convecção mista. É feita uma análise dos efeitos da força de empuxo nas características de transferência de calor e atrito, na superfície da cunha submetida a um escoamento laminar em convecção forçada. Os casos analisados referem-se a temperatura uniforme na superfície e a fluxo de calor uniforme através da superfície.
Apresentam-se resultados numéricos para a placa vertical e a cunha em 120 graus celsius (problema similar), os quais foram comparados com os disponíveis na literatura, apresentando-se excelente concordância. Ainda são apresentados resultados para a cunha em 90 graus celsius e em 180 graus Celsius. Os resultados foram obtidos para o número de Prandtl 0,7 em uma larga faixa do parâmetro de não-similaridade (0 a 100 para temperatura uniforme e 0 a 5 para fluxo de calor uniforme). Em geral, verifica-se que para ambos os casos estudados de condições da superfície, o coeficiente de atrito local e o número de Nusselt local aumentam com o aumento da força de empuxo para o escoamento ajudado e diminuem com o aumento da força de empuxo para o escoamento ajudado e diminuem com o aumento da força de empuxo para o escoamento oposto. Verifica-se também que os efeitos de convecção natural diminuem com o aumento do ângulo da cunha. Compara-se, por fim os resultados de transferência de calor entre os dois casos estudados.
O método possibilita a obtenção de resultados com o uso de um microcomputador PC AT-286 com o co-processador matemático, sem o uso de dupla precisão. As tolerâncias utilizadas para a convergência são as mesmas dos resultados disponíveis na literatura.
Adicionalmente, o tempo computacional necessário para a obtenção das soluções foi bastante reduzido. Para toda a faixa de variação do parâmetro de não-similaridade, o equacionamento utilizado foi o mesmo, baseado em parâmetros de correlação para convecção forçada em uma superfície plana com injeção de massa, com ótima concordância com resultados disponíveis na literatura. / [en] The present work introduces a method for searching initial values, to solve non-similar Boundary Layer problems. The new method has been applied to the problem of mixed convection on a Wedge. An analysis is performed to study the effects of buoyancy force on the heat transfer and friction characteristics of laminar forced convection flow which is either maintained at a uniform temperature or subjected to a uniform temperature or subjected to a uniform heat flux.
Numerical results are presented for Prandtl number of 7,0 over a wide range of values of the buoyancy force parameters (0 to 100 for uniform temperature and 0 to 5 for uniform heat flux). The results for the vertical plate and for the similar wedge (120 graus celsius)
Have been compared with solutions availabein the literature, showing an excellent agreement. In addition, solutions for the 90 degree celsius wedge and for the flat wall (180 degree celsius are also obtained. In general, it is found that for both surface heating conditions, the local friction factor and the local Nusselt number increase with increasing bouyancy force for assisting flow and decrease with inscreasing bouyancy force for opposing flow. Further, the effects of the buoyancy force on these two quantities are found to diminish as the angle of the wedge increases. A comparison is also made of the results beteween the case of uniform wall temperature and the case of uniform surface heat flux.
The method turns possible to obtain results with the use of a microcomputer PC AT-286 with a Math co-processor, discarding the use of double precision. The tolerances for convergence are the same as the results available in the literature. The necessary computacional time to get the solution was greatly reduced. For the entire range of the buoyancy force parameter, the governing equations are the same, based upon forced convection parameters. To illustrate the flexibility of the method, the surface mass trasnfer problem of uniform injection (blowing) in a flat plate under forced cnvection, has been solved and the results compared with the available ones in the literature.
|
3 |
[en] ASYMPTOTIC EXPANSIONS APPLIED TO FORCED CONVECTION AT VANISHINGLY SMALL VISCOSITY FOR THE CONSTANT VORTICITY FLOW OVER AN INFINITE WEDGE / [pt] EXPANSÕES ASSINTÓPICAS APLICADAS À CONVECÇÃO FORÇADA EM UMA CUNHA INFITA IMERSA NUM ESCOAMENTO COM VORTICIDADE CONSTANTE E BAIXA VISCOSIDADESIDNEY STUCKENBRUCK 28 October 2011 (has links)
[pt] Abreu (1967) estudou o problema do escoamento bi-dimensional
viscoso, incomprenssível, com vorticidadade constante, aplicado ao
escoamento simético em torno de uma cunha infinita.
Este trabalho adorda o problema de Abreu para acaso em que o fluido em escoamento
acha-se a uma temperatura constante e a superfície da cunha
é não-isotérmica, ocorrendo o surgimento de uma camada limite térmica.
Foi aplicado o método das expressões assintóticas acopladas. Existem quatro problemas
a serem resolvidos: dois externos e dois internos. A solução desses problemas conduz
a solução assintótica do problema para altos valores do número de Reynolds.
Foi resolvido o sistema composto pelas equações de Navier-Stokes, continuide
e energia. É apresentada a solução geral para semi-ângulos de cunha entre 0 grau e 90 graus, e a solução numérica para casos particulares de semi-ângulos de 0 grau, 18 graus, 72 graus e para valores de Prandtl iguais a 0.7, 1 e 10. / [en] Abreu (1967) studied the two-dimensional ,inconpressible, constant
vorticity flow past an infinite wedge.
In the present work the problem solved by Abreu is considered for
the case where a constant temperature fluid flows past an infinite
wedge with non-isothernal surface, thus given rise to a thermal boundary
layer.
The matched asyntotic expansion netod,as present in Van Dyke(1962), was applied
to the solution of the problem. According to Van Dyke there are
four problems leads to the desired asynpotic solution for large
values of the Reynolds number. The solution defines a system forned
by the Navier Strokes, continuity and energy equations. The asym
ptotic expansions found by Abreu (1967) for the hydrodynamic problem i.e for
the continuity and Navier-Stokes equations were used in our solution.
Although a general analytical solution was found for any angle
of the wedge between 0 degree and 90 degrees numerical solutions are show for the
particular semi-angle values of 0 degree, 18 degrees and 72 degrees and Prandt 1 numbers
values of 0.7,1.0 and 10.
|
4 |
[en] FORCED CONVECTION IN LAMINAR FLOWS OF VISCOPLASTIC LIQUIDS THROUGH TUBES AND ANNULI / [pt] CONVECÇÃO FORÇADA EM ESCOAMENTOS LAMINARES DE LÍQUIDOS VISCOPLÁSTICOS EM TUBOS E ESPAÇOS ANULARESMARIA HELENA FARIAS 05 January 2005 (has links)
[pt] Escoamentos de fluidos não Newtonianos são comumente
encontrados em processos industriais. Deste modo, é
importante conhecer bem o efeito dos processos sobre a
reologia desta classe de fluidos, assim como o inverso,
ou seja, conhecer o efeito da interferência da reologia de
tais fluidos sobre os processos. Fluidos não Newtonianos
exibem complexidade no seu comportamento mecânico, não
encontrada nos fluidos Newtonianos, como, por exemplo,
dependência da viscosidade com a taxa de cisalhamento
e a existência de uma tensão-limite de escoamento não nula.
Verifica-se, atualmente, a existência de uma ampla lacuna
na literatura no que diz respeito µa compreensão da
interação de fluidos não newtonianos em diferentes
geometrias de escoamento, em particular sob o ponto de vista
térmico. Algumas geometrias, por serem mais comuns nas
linhas industriais, têm recebido maior atenção nas
investigações sobre o referido aspecto, como, por exemplo,
os casos do tubo circular e do espaço anular. Encontra-se
uma maior quantidade de trabalhos publicados de estudos
analíticos ou de simulação numérica, enquanto que são raros
os artigos baseados em investigações experimentais. No
presente trabalho, o qual teve como motivação a avaliação
do comportamento térmico de um poço de petróleo durante sua
perfuração, estudou-se experimentalmente o efeito da
reologia do fluido no processo de transferência de calor em
espaços anulares e, também, em tubos. O objetivo foi
determinar o coeficiente interno de transferência de calor
(Número de Nusselt) para o caso de parede interna com fluxo
de calor uniforme e parede externa adiabática para o anular
e fluxo de calor uniforme para o tubo. Utilizou-se um
fluido do tipo viscoplástico, que reproduz bem o
comportamento do fluido de perfuração, em diferentes
concentrações, no intuito de se observar a influência da
reologia do fluido no escoamento não isotérmico. Diferentes
razões de raios do espaço anular foram estudadas. Os
resultados experimentais mostram que, em escoamentos
laminares e completamente desenvolvidos, a reologia do
fluido não afeta a transferência de calor no espaço anular,
sendo esta, fundamentalmente, dependente da geometria.
Estes resultados estão de acordo com previsões teóricas
recentemente publicadas, e a principal contribuição do
presente trabalho é confirmar este resultado surpreendente,
que torna mais simples os projetos envolvendo o escoamento
de materiais viscoplásticos em espaços anulares sob as
condições de contorno investigadas. / [en] Non-Newtonian fluids flow are very common in industrial
processes, so it is important to know both the effect of
the process on the fluid and vice-versa. Non-Newtonian
Fluids exhibit complex mechanical behavior not found in
Newtonian fluids, such as shear-rate-dependent viscosity
and non-zero Yield stress. Nowadays there is a lack of
understanding in the literature of the interaction among
non-Newtonian fluids and different flow geometries,
particularly as far as heat transfer is concerned. Some
geometries are found more frequently in industrial
processes, being, accordingly, a more frequent subject of
research. Among these are the tubes and annuli. Most of the
published articles about this subject are analytical
studies or numerical simulations, while those based on
experimental investigations are rather scarce. This work is
focused in the evaluation of the thermal behavior of
oil wells during the flow of the drilling fluid. The effect
of fluid rheology on heat transfer in annular spaces and
circular tubes was investigated experimentally. The purpose
was to determine the convective heat transfer coefficient
(Nusselt number). The boundary conditions for the annuli
were uniform heat flux at the inner wall and adiabatic
outer wall, while, for the tube, the heat flux at the wall
was kept constant and uniform. To mimic the drilling fluid
mechanical behavior, the working fluids were viscoplastic
liquids at different concentrations. For the annuli,
different radius ratios were studied. The experimental
results showed that, for laminar and fully developed flow
in the annuli, the fluid rheology does not affect the
Nusselt number, which is governed by the radius ratio only.
These results are in agreement with recently published
theoretical predictions, and the main contribution of this
work is to confirm this surprising result, which renders
simpler the projects involving non-Newtonian fluids flowing
in annuli under the thermal boundary conditions
investigated.
|
5 |
[en] TRANSPORTATION COEFFICIENTS FOR FLAT AND FINNED TRIANGULAR DUCTS / [pt] COEFICIENTES DE TRANSPORTE EM DUTOS TRIANGULARES LISOS E PINADOSSERGIO LEAL BRAGA 21 September 2012 (has links)
[pt] Experiências foram realizadas para se determinar coeficientes de transferência de calor e fatores de atrito para escoamento em dutos cujas seções transversais têm a forma de triângulos isósceles. Dois dutos foram usados; um tinha um ângulo de vértice igual a 120 graus e o outro 60 graus. As experiências foram realizadas utilizando-se trocadores de calor de dutos triangulares. Os fluidos foram ar e água. Coeficientes médios de transferência de calor foram determinados através da medida dis coeficientes globais de transferência de calor dos trocadores. No caso do duto de 120 graus, as paredes dos triângulos isósceles eram lisas. Foram estudados escoamentos laminares e turbulentos. Para o duto de 60 graus, duas paredes pinadas. A finalidade dos pinos foi aumentar a área de troca de calor. Nesse caso (60 graus) apenas escoamento turbulento foi estudado. Para os dutos com paredes lisas, foi possível se obter a dependência dos coeficientes de troca de calor dos dutos com o número de Prandtl. Para se atingir condições totalmente desenvolvidas, os trocadores de calor, tinham um comprimento de entrada de aproximadamente 35 diâmetros hidráulicos. As condições de contorno térmicas consistiram de temperatura uniforme nas paredes iguais dos dutos, sendo a terceira parede isolada. Os dutos triangulares dos trocadores de calor consistiram de duas paredes metálicas e uma parede de material menos condutor. Os resultados são apresentados sob formas adimensionais. Números de Nusselt e fatores de atrito como funções dos números de Reynolds. / [en] Experiments were performed to determine heat transfer coefficients and friction factors for flows in ducts whose cross sections have the shape of isosceles triangles. Two ducts were used; one with an apex angle equal to 120 degrees and the other 60 degrees. The experiments were performed by utilizing triangular duct heat exchangers. The fluids were air and water. Average heat transfer coefficients of the heat exchangers. In the case of the 120 degrees duct, the walls of the isosceles triangles were smooth. Laminar and turbulent flows were studied. For the 60 degrees duct, two situations were considered; one with smooth walls and the other with two pinned walls. The purpose of the pins was to increase the heat transfer area. In this case (60 degrees) only turbulent flow was studied. For the ducts with smooth walls, it was possible to obtain the dependence of the duct heat transfer coefficients with prandtl number. To attain the duct heat transfer coefficients with Prandtl number. To attain fully developed conditions, the heat exchangers had a starting length of approximately 35 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the two equal walls of the duct, the third wall being insulated. The triangular ducts of the heat exchangers consisted of two metallic walls and of lesser conduction material. The results are presented in dimensionless forms. Nusselt numbers and friction factors as functions of Reynolds Numbers.
|
6 |
[en] NATURAL CONVECTION INFLUENCE IN THE COOLDOWN OF OIL AND GAS SUBSEA PIPELINES / [pt] INFLUÊNCIA DA CONVECÇÃO NATURAL NO RESFRIAMENTO DE DUTOS SUBMARINOS DE PETRÓLEO E GÁSDENI LEMGRUBER QUEIROZ 13 December 2007 (has links)
[pt] No processo de transporte e produção de petróleo e seus
derivados em
linhas submarinas, o controle da transferência de calor
entre o produto quente e o
mar frio, é fundamental para a garantia do escoamento. Se
a temperatura do
produto cair abaixo de determinados valores críticos,
problemas como formação
de hidratos ou deposição de parafina nas paredes da
tubulação podem ocorrer,
levando ao bloqueio da linha e interrupção de produção,
demandando altos
custos. A perda de calor para o ambiente é minimizada,
através de isolantes
térmicos projetados para operações em regime permanente.
Nestes casos, devido
às altas velocidades do escoamento axial, o qual é
tipicamente turbulento, o
processo de transferência de calor dominante é o de
convecção forçada. Porém,
durante uma operação de manutenção de algum equipamento, a
produção pode
ser interrompida e o fluido ficando parado no interior da
linha, tende a resfriar-se
podendo atingir uma temperatura crítica. Durante este
resfriamento, na ausência
de bombeio, o processo de convecção natural passa a
dominar. O presente
trabalho analisa o processo de transferência de calor após
a parada de bombeio,
considerando os efeitos da convecção natural no
resfriamento do produto, assim
como a influência da capacidade térmica da parede do duto
e das camadas de
revestimento no transiente térmico. Inicialmente,
considera-se que o escoamento
axial é rapidamente levado ao repouso e utiliza-se um
modelo bidimensional da
seção transversal do duto, utilizando três produtos
típicos: um óleo leve, um óleo
pesado, e um gás. Os campos de velocidade e temperatura
são obtidos
numericamente utilizando o software FLUENT, considerando a
hipótese de
Boussinesq para avaliar a convecção natural. A taxa de
resfriamento obtida é
comparada com a previsão de um modelo unidimensional na
direção axial, que
utiliza correlações empíricas para avaliar a transferência
de calor entre o fluido a parede da tubulação, em função
do regime de escoamento. Boa concordância
entre as simulações para a seção central da linha é
obtida. No entanto, como as
variações axiais para o caso do gás são maiores, para este
produto, um modelo
tridimensional também foi analisado, onde se considerou os
efeitos combinados
da convecção forçada e natural. Adicionalmente, a hipótese
de Boussinesq foi
eliminada, e a equação de gás ideal foi considerada. / [en] Heat transfer control is crucial for flow assurance in
transport as well as
production operations of oil and its derivatives in subsea
lines. If the product
temperature falls below certain critical values, problems
such as hydrate
formation or wax deposition in the pipelines walls can
occur, inducing line
blockage and interruption of production, demanding high
costs. The heat loss to
the environment is minimized by employing thermal
insulation, which are
designed for stead state operations. For these cases, due
to high axial velocities,
the flow is typically turbulent, and the dominant heat
transfer mechanism is due
to convection forced. However, during maintenance
operation of some
equipment, the production can be interrupted and the
stagnant fluid in the interior
of the line tends to cool down and it can reach a critical
temperature. During this
cooling, in the absence of pumps, the process of natural
convection begins to
dominate. The present work analyzes the heat transfer
process after flow
shutdown, considering the effect of the natural
convection, as well as the
influence in the thermal transient of the thermal capacity
of the duct wall and
insulation layers. Initially, it is considered that the
axial flow is set to rest very
quickly and a two-dimensional model of the transversal
section of the duct is
employed, using three typical products: light oil, heavy
oil and pressurized gas.
The velocity and temperature filed are obtained using the
numerical software
FLUENT, considering the hypothesis of Boussinesq to
evaluate the natural
convection. The cooling rate is compared with the forecast
of a unidimensional
model in the axial direction based on empirical
correlations, function of the flow
regime, to evaluate the heat transfer between the fluid
and the duct wall. Good
agreement is obtained between the solutions of the 2-D
model and the pipeline
central cross section of the 1-D model. However, as the
axial variations for the gas case are significant, for
this product, a three-dimensional model also was
analyzed, where it was considered the effects of the
forced and natural
convection. Additionally, the hypothesis of Boussinesq was
eliminated, and the
ideal gas equation was considered.
|
7 |
[en] FORCED CONVECTION OF A CHANNEL PARTIALLY BLOCKED BY A HEAT DISSIPATING ELEMENT / [pt] CONVECÇÃO FORCADA EM UM CANAL PARCIALMENTE OBSTRUÍDO POR UM ELEMENTO GERADOR DE CALOR: UMA INVESTIGAÇÃO NUMÉRICASERGIO LUIZ FREY 15 March 2018 (has links)
[pt] No presente trabalho foi realizada uma investigação numérica de um escoamento forçado em um canal plano parcialmente construído por um elemento retangular aquecido com temperatura da parede constante. O elemento tem dimensões fixas e foi estudado em diferentes posições do canal, ao passo que este tem comprimento fixo e largura variável, de modo a obter-se uma razão de aspecto entre 21,8 e 4,0. A faixa investigada do número de Reynolds foi de 100 a 1500, e o número de Prandtl foi fixado em 0,7, a fim de simular escoamento de ar com propriedades constantes. O método numérico utilizado na resolução das equações de conservação que regem o escoamento foi o método dos volumes de controle desenvolvido por Suhas V. Patankar. A partir dos perfis de velocidade, pressão e temperatura foram calculados a perda de carga ao longo do canal e o número de Nusselt médio em torno do elemento. Foram também realizadas comparações com outros trabalhos; tanto dos resultados hidrodinâmicos como dos térmicos, e boas concordâncias foram obtidas. / [en] A numerical investigation of a forced flow in a partially obstructed plate channel was performed in the present work. The obstruction was an isothermal rectangular element. The effect of the element, which had fixed dimensions, was studied for different channel positions. The channel had a fixed length but its width was variable, making it possible to obtain an aspect ratio between 21,8 and 4.0. The investigation was made for Reynolds number from 100 to 1500 and the Prandtl number was fixed at 0.7, to simulate a constant property air flow. The numerical method used in the solution of the conservation law equations which govern the flow was the control volume numerical method, developed by Suhas V. Patankar. From the velocity, pressure and temperature profiles, the head loss along the channel and the average Nusselt number around the element surface. The hydrodynamical and thermal results were compared, when possible, with previous papers, and a good agreement was obtained.
|
8 |
[en] INTERNAL AIRFLOW OVER A MATRIX OF RECTANGULAR BLOCKS: EFFECT OF NONUNIFORMITIES IN HEAT TRANSFER AND PRESSURE DROP / [pt] ESCOAMENTO INTERNO DE AR SOBRE UMA MATRIZ DE MÓDULOS RETANGULARES: EFEITOS DE NÃO-UNIFORMIDADES NA TRANSFERÊNCIA DE CALOR E PERDA DE CARGAWILSON FERNANDO NOGUEIRA DOS SANTOS 03 April 2018 (has links)
[pt] Efeitos na transferência de calor e perda de carga de uma matriz de módulos retangulares, localizada no interior de um duto retangular plano, foram analisados experimentalmente tendo-as ar como fluido de trabalho. A pesquisa foi desenvolvida objetivando simular a refrigeração de componentes eletrônicos por convecção forçada. Aplicando-se a técnica de sublimação de naftaleno determinaram-se os coeficientes de transferência de massa (calor) para três situações investigadas durante o curso da experiência. São elas: (a) para a matriz base formada apenas por módulos regulares, (b) para um módulo alto inserido em todas as posições na linha de centro na matriz, (c) para os módulos vizinhos ao módulo alto na matriz. A partir dos resultados obtidos, determinaram-se correlações para o Número de Sherwood em função do Número de Reynolds compreendido na faixa de 2000 a 7000. O Número de Sherwood do môdulo alto, mostrou-se substancialmente maior comparado com o módulo regular da mesma posição. Esse acréscimo foi da ordem de 90 por cento a 95 por cento na região completamente desenvolvida, para baixo Número de Reynolds. Verificou-se que a presença do módulo alto causou um significativo aumento no coeficiente de transferência de calor nos modulos vizinhos, atingindo em alguns casos, aumento de 50 por cento. O módulo posicionado ao lado do módulo alto acusou o maior acréscimo de transferência de calor. Medidas de pressão na matriz sem e com módulo alto foram realizadas. Com a introdução do módulo alto, um acréscimo na perda de carga for verificado, sendo que, para o menor Número de Reynolds, este incremento corresponde a perda de carga equivalente a aproximadamente seis fileiras de módulos regulares. / [en] Heat transfer and pressure drop characteristics an array of rectangular modules inside a rectangular duct were experimentally studied using air as the working fluid. The research was conducted with the aim of simulating the cooling of eletronic components by forced convection. Mass ( Heat ) transfer coefficients were determined via naphthalene sublimation technique for three different situations, namely (a) for modules in the basic array, composed of regular modules only, (b) for a tall module positioned at all positions in the array center longitudinal row, and (c) for the modules in the neighborhood of the tall module. With basis on the results obtained, relations for the Sherwood (Nusselt) Number were obtained as a function of the Reynolds Number, which varied from 2000 to 7000. The Sherwood Number for the tall module was found to be higher than the one for the regular module at the same position. This increase was of the order of 90-95 percent, in the fully developed region and for low Reynolds Number. It was found that the presence tall module caused of the significant enhancements on the heat (mass) transfer coefficient of the neighboring modules, reaching in same cases 50 percent increases. The regular modules situated by the sides of the tall module underwent the highest enhancements on heat transfer. Pressure Measurements on the array with and without the tnll module where performed. In the presence of the tall module, an additional pressure loss was observed, being equivalent to the loss associated with approximately six transversal rows of regular modules, for the lower Reynolds Number.
|
9 |
[en] HEAT TRANSFER BY NATURAL CONVECTION FROM A SPHERE IMMERSED IN THE WATER NEAR THE POINT OF MAXIMUM DENSITY / [pt] TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL DE UMA ESFERA IMERSA NA ÁGUA PERTO DO PONTO DE DENSIDADE MÁXIMADANIEL HERENCIA QUISPE 07 August 2012 (has links)
[pt] Neste trabalho foi feita um análise teórica, da influência da relação densidade-temperatura, nas proximidades da densidade máxima, sobre a transferência de calor por convecção natural. Para este estudo foi considerado o sistema formado por uma esfera isotérmica imersa em água:
Usando as simplificações da camada limite e a transformação de similaridade, as equação de conservação de massa, momentum e energia, foram reduzidas a sistemas de duas equações diferencias ordinárias, não lineares, de condições de contorno. Estas equações diferenciais simultâneas as quais descrevem os campos de velocidade e temperatura da superfície da esfera, como da temperatura da água.
A solução destas equações dão dois tipos de regimes de fluxo, o primeiro o usual fluxo unidirecional e o segundo o bidirecional no qual existe fluxo inverso. Em ambos regimens a direção do fluxo depende tanto da temperatura da superfície da esfera, como da temperatura da água.
O objetivo principal deste estudo foi obter a variação do coeficiente de transmissão de calor, o qual depende tanto da temperatura de superfície da esfera, como da temperatura da água.
Tendo em vista que a densidade máxima da água ocorre na temperatura de 3,98 graus Celsius , e a temperatura da esfera de 0 graus Celsius a 35 graus Celsius.
Os resultados numéricos foram obtidos com o emprego dos computadores digitais IBM-1130 e /370 do Rio Datacentro da Puc. / [en] In this work a theoretical analysis was made on the influence of the temperature density relationship on natural convetion heat transfer in the region of maximum desity. An Isothermal sphere immersed in water was considered in this study.
Using boundary layer simplifications and similarity transformationhs, thecontinity, momentum, and energy equations which are non linear and depend on the boudary conditions. These symultaneous differential equations, which describe the velocity and temperature of the sphere as well as the water.
The sotution of these equations gives twotypes of flow regimes; the first, the common unidirectional one., and the second, a bidirectional one, in which there is flow reversal. In both of theases regimes of the sphere and water.
The principle objective oh this study was to abtain the variation in the heat transfer coefficient wich is dependent on the velocity field, wich in turn is dependent upo the temperatures of the sphere and water.
Since the maximum desity of water occurs at 3,98 Celsius degrees, the temperature of the water in this study was varied between 0 Celsius degrees and 20 Celsius degrees, while the temperature of the sphere was varied between 0 Celsius degrees and 35 Celsius degrees.
Numerical results were obtain with the use of the IBM-1130 and 370 computors at Rio Datacentro of PUC.
|
10 |
[en] SOLIDIFICATION AND FUSION OF PURE SUBSTANCES UNDER THE INFLUENCE OF LAMINAR AND TURBULENT NATURAL CONVECTION / [es] SOLIDIFICACIÓN Y FUSIÓN DE SUSTANCIAS PURAS SOBRE LA INFLUENCIA DE CONVECCIÓN NATURAL LAMINAR Y TURBULENTA / [pt] SOLIDIFICAÇÃO E FUSÃO DE SUBSTÂNCIAS PURAS SOB A INFLUÊNCIA DA CONVECÇÃO NATURAL LAMINAR E TURBULENTALUIZ JOAQUIM CARDOSO ROCHA 27 July 2001 (has links)
[pt] Solidificação e fusão fazem parte de uma classe de
problemas transientes de transferência de calor conhecidos
como problemas de mudança de fase ou de fronteira móvel. A
solução desta classe de problemas envolve uma dificuldade
inerente ao processo que é o movimento da interface entre
as fases sólida e líquida. Este movimento está relacionado
à absorção ou remoção do calor latente na interface. Como
conseqüência a localização da interface sólido/líquido não
é conhecida a priori tornando-se parte da solução.
No presente trabalho, considera-se a mudança de fase em
regime transiente de um material puro, na presença de
convecção natural, em uma cavidade fechada bidimensional.
A interface entre as fases sólida e líquida se comporta
como um contorno bem definido com temperatura igual à
temperatura de mudança de fase do material. O material na
fase líquida é considerado um fluido Newtoniano e a
aproximação de Boussinesq é utilizada.
Tanto na região líquida, quanto na região sólida, as
propriedades termofísicas são constantes e uniformes,
porém, diferentes entre si. O sistema de coordenadas
adotado é aquele onde suas coordenadas adaptam-se ao
contorno da geometria, e considera, quando
existe movimento de fronteira e/ou interface, sua
velocidade de deslocamento.
A intensidade na qual o fluido se movimenta provoca
mudanças na forma da interface e é de fundamental
importância no fenômeno da mudança de fase. No começo do
processo de mudança de fase, o modo de transferência de
calor na fase líquida é devido somente à condução de calor.
À medida que a velocidade do fluido aumenta, o processo de
transferência de calor por convecção começa a dominar. O
escoamento ocorre no regime laminar mas eventualmente torna-
se turbulento, o que aumenta significativamente as taxas
de transferência de calor ao longo da interface. Além
disso, como as partículas fluidas se deslocam mais
rapidamente há uma melhor distribuição destas taxas ao
longo da interface, com uma diminuição em sua curvatura.
O modelo de turbulência selecionado pertence à família de
modelos k-e. O modelo k-e tradicional é utilizado no núcleo
turbulento, e um outro conjunto de equaçõesdesenvolvido a
partir de dados de simulação numérica direta, é utilizado
na região próxima às paredes. A metodologia implementada
permite determinar naturalmente a transição do regime
laminar para o turbulento.
O presente trabalho apresenta uma nova metodologia no
tratamento da interface entre as regiões sólida e líquida.
Um volume de controle de espessura zero representa a posição
da interface. Uma vez resolvida a equação do balanço
combinado de massa e energia na interface, nenhum artifício
é necessário para se avaliar sua nova posição. Devido ao
salto de massa específica na interface alguma variação no
volume total do material é esperada.
Entretanto, o modelo atual não prevê aumento no volume
total do material e algum artifício deve ser utilizado para
adicionar ou retirar massa do domínio. A utilização do
volume de controle zero na interface permite retirar ou
adicionar massa sem a necessidade de termos de fonte
adicionais. Também é utilizado o artifício de redistribuir
os pontos nodais entre as fases sólida e líquida no intuito
de não alocar muitos pontos nodais em regiões de pequenas
espessuras. A redistribuição de pontos garante um
refinamento melhor junto à interface e, possibilita a
utilização de maiores intervalos de tempo sem introduzir
dificuldade de convergência.
Os resultados numéricos são comparados a dados
experimentais e resultados numéricos para os processos de
fusão e solidificação de materiais puros.
A boa concordância com dados experimentais revela que a
metodologia apresentada resulta numa melhora na resolução
deste tipo de problemas. / [en] Solidification and fusion belong to a class of transient
heat transfer problems known as phase change problems or
moving boundary problems. The solution of this class of
problems presents an additional difficulty concerning the
movement of the interface. This movement is due to the
absorption or removal of the latent heat at the interface.
As a consequence the position of the interface is not
known, being part of the solution.
At the present work, the transient phase change of a pure
substance is considered in the presence of natural
convection in a closed two dimensional cavity.
The interface is a well-defined boundary at the phase
change temperature. The liquid phase is assumed to be
Newtonian and the Boussinesq approximation is adopted. The
properties of both liquid and solid phases are constant,
although different of each other. A non-orthogonal
coordinate system, which adapts to the geometry, is
employed. This coordinate system moves with
time to adapt to the varying interface position.
The intensity of the fluid movement promotes changes in the
interface shape, and it is extremely important for the
phase change phenomena. At the beginning of the phase
change process, the heat transfer mechanism at the liquid
phase is due only to conduction.
As the fluid velocity increases, the heat transfer by
convection begins to dominate the process. The flow is
laminar, and eventually the fluid flow becomes turbulent,
substantially increasing the heat transfer rate along the
interface. Further, since the fluid particles move
more rapidly, theses heat fluxes along the interface are
better distributed, causing a reduction of the interface
curvature.
The turbulence model selected belongs to the k-e family.
The traditional k-e é employed at the turbulent core and
another set of equations, developed based on direct
numerical simulation data, is employed at the near wall
region. The methodology is capable of determining the
transition from laminar to turbulent flow.
The present works presents a new methodology to determine
the interface between solid and liquid regions. A zero
thickness control volume represents the interface position.
Once the mass and energy balance equations are solved at
the interface, no further schemeis necessary to evaluate
its new position. The zero thickness control volume at the
interface allows the mass to be conserved at the liquid
region without the need of any special treatment, in spite
of the specific mass jump across the interface. The grid
distribution is adjusted between the liquid and solid phase
during the phase change process, in order to optimize the
grid distribution in the domain. Further, the grid
redistribution allows the use of larger time steps, without
convergence difficulties.
The numerical results are compared with experimental and
numerical data available in the literature for fusion and
solidification of pure substances. The good agreement
reveals that the presented methodology furnishes an
improved solution for this type of problems. The point
redistribution allows the specification of larger time
steps without compromising the convergence and precision. / [es] Solidificación y fusión forman parte de una clase de problemas de transferencia de calor conocidos
como problemas de cambio de fase o de frontera movil. La solución de esta clase de problemas
envuelve una dificuldad inherente al proceso: el movimiento de la interfaz entre las fases sólida y
líquida. Este movimiento está relacionado con la absorción o extracción del calor latente en la
interfaz. Como consecuencia, la localización de la interfaz sólido/líquido no se conoce a priori, por
lo
que forma parte de la solución. En el presente trabajo, se considera el cambio de fase en régimen
transitorio de un material puro, en presencia de convección natural, en una cavidad cerrada
bidimensional. La interfaz entre las fases sólida y líquida se comporta como un contorno bien
definido con temperatura igual a la temperatura de cambio de fase del material. El material en
fase
líquida es considerado un fluido Newtoniano, por lo que se utiliza la aproximación de Bousinesq.
Tanto en la región líquida como en la sólida, las propiedades termofísicas son constantes y
uniformes,
aunque diferentes entre sí. El sistema de coordenadas adoptado es aquel donde las coordenadas se
adaptan al contorno de la geometría; y considera su velocidad de deslizamiento cuando existe
movimiento de fronteira y/o interfaz. La intensidad del fluido provoca cambios en la forma de la
interfaz lo que resulta de fundamental importancia en el fenómeno del cambio de fase. Al inicio del
proceso de cambio de fase, el modo de transferencia de calor en la fase líquida se debe solamente a
la conducción de calor. A medida que la velocidad del fluido aumenta, el proceso de transferencia
de calor por convección comienza a dominar. El fujo ocurre en el régimen laminar, pero
eventualmente se vuelve turbulento, lo que aumenta significativamente las tasas de transferencia de
calor a lo largo de la interfaz. Además de esto, como las partículas fluidas se desplazan más
rapidamente, hay una mejor distribución de estas tasas a lo largo de la interfaz, con una disminución
en su curvatura. El modelo de turbulencia seleccionado pertence a la família de modelos k-y. El
modelo k-y tradicional se utiliza en el núcleo turbulento, y se desarrolla otro conjunto de ecuaciones
a
partir de datos de simulación numérica directa, que es utilizado en la región próxima a las paredes.
La metodología implementada permite determinar naturalmente la transición del régimen laminar
para el turbulento. Este trabajo presenta una nueva metodología en el tratamiento de la interfaz
entre las regiones sólida y líquida. El volúmen de control de espesura cero representa la posición de
la interfaz. Una vez resuelta la ecuación del equilibrio combinado de masa y energía en la interfaz,
no se necesita evaluar su nueva posición. Debido al salto de masa específica en la interfaz, se
espera
alguna variación en el volúmen total del material. Sin embargo, el modelo actual no prevee un
aumento en el volumen total del material y se debe utilizar cierto artificio para adicionar o retirar
masa del dominio. La utilización del volumen de control cero en la interfaz permite retirar o
adicionar
masa sin necesidad de términos de fuente adicionales. También es utilizado el artificio de
redistribuir
los puntos nodales entre las fases sólida y líquida con el objetivo de no considerar muchos puntos
nodales en regiones de pequenas espesuras. Esta redistribución garantiza un mejor refinamiento
junto a la interfaz y, posibilita la utilización de mayores intervalos de tiempo sin introducir mayores
problemas de convergencia. Los resultados numéricos son comparados con datos experimentales y
con resultados numéricos para los procesos de fusión y solidificación de materiales puros. La
concordancia con datos experimentales revela que la metodología presentada mejora la resolución
de este tipo de problemas.
|
Page generated in 0.036 seconds