1 |
[pt] MODELOS DE PROGRAMAÇÃO ESTOCÁSTICA COM AVERSÃO A RISCO: CONSEQUÊNCIAS PRÁTICAS DA APLICAÇÃO DE CONCEITOS TEÓRICOS / [en] RISK AVERSE STOCHASTIC PROGRAMMING MODELS: PRACTICAL CONSEQUENCES OF THEORETICAL CONCEPTSDAVI MICHEL VALLADAO 17 November 2021 (has links)
[pt] Esta tese é composta por quatro artigos que descrevem diferentes formas de inclusão de aversão a risco em problemas dinâmicos, ressaltando seus aspectos teóricos e consequências práticas envolvidas em técnicas de otimização sob incerteza aplicadas a problemas financeiros. O primeiro artigo propões uma interpretação econômica e analisa as consequencias práticas da consistência temporal, em que particular para o problema de seleção de portfólio. No segunfo artigo, também aplicado à seleção de portfólio, é proposto um modelo que considera empréstimo como variável de decisão e uma função convexa e linear por partes que representa a existência de diversos credores com diferentes limites de crédito e taxas de juros. A performance do modelo proposto é melhor que as aproximações existentes e garante otimalidade para a situação de vários credores. No terceiro artigo, desenvolve-se um modelo de emissão de títulos de dívida de uma empresa que seja financiar um conjunto pré-determinado de projetos. Trata-se de um modelo de otimização dinâmico sob incerteza que considera títulos pré e pós-fixados com diferentes maturidades e formas de amortização. As principais contribuições são o tratammento de um horizonte longuíssimo prazo através de uma estrutura híbrida dos cenários; a modelagem detalhada do pagamento de cupons e amortizações; o desenvolvimento de uma função objetivo multi-critério que reflete o trade-off entre risco-retorno além de outras medidas de performance financeiras como a taxa de alavancagem (razão passivos sobre ativos). No quarto artigo é desenvolvido um modelo de programação estocástica multi-estágio para obter a política ótima de caixa de uma empresa cujo custo de investimento e o custo da dívida são incertos e modelados em diferentes regimes. As contribuições são a extensão de metodologia de equilíbrio dual para um modelo estocástico; a proposição de uma regra de decisão baseada na estrutura de regime dos fatores de risco que aproxima de forma satisfatória o modelo original. / [en] This PhD Thesis is composed of four working papers, each one with a respective chapter on this thesis, with contributions on risk averse stochastic programming models. In particular, it focuses on analyzing the practical consequences of certain theoretical concepts of decision theory, finance and optimization. The first working paper analyzes the practical consequences and the economic interpretation of time consistent optimal policies, in particular for well known portfolio selection problem. The second paper has
also a contribution to the portfolio selection literature. Indeed, we develop leverage optimal strategy considering a single-period debt with a piecewise linear borrowing cost function, which represents the actual situation faced by investors, and show a significant gap in comparison to the suboptimal
solutions obtained by the usual linear approximation. Moreover, we develop a multistage extension where our cost function indirectly penalizes the excess of leverage, which is closely related to the contribution of the next working paper. The contribution of the third working paper is to penalize excess of leverage in a debt issuance multistage model that optimizes over several types of bonds with fixed or floating rate, different maturities and amortization patterns. For the sake of dealing with the curse of dimensionality of a long term problem, we divide the planning horizon into a detailed part at the beginning followed by a policy rule approximation for the remainder. Indeed, our approximation mitigates the end effects of a
truncated model which is closely related to the contributions of the forth working paper. The forth paper develops a multistage model that seeks to obtain the optimal cash holding policy of a firm. The main contributions are a methodology to end effect treatment for a multistage model with
infinite horizon and the development of a policy rule as approximation of the optimal solution.
|
Page generated in 0.0233 seconds