• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] A MIDDLEWARE AND AN APPLICATION FOR COLLABORATIVE PRESENTATION SHARING ON HANDHELDS / [pt] UM MIDDLEWARE E APLICATIVO PARA APRESENTAÇÃO COLABORATIVA PARA DISPOSITIVOS MÓVEIS

MARCELO ANDRADE DA GAMA MALCHER 21 February 2008 (has links)
[pt] A atual evolução dos dispositivos computacionais móveis e a crescente ubiqüidade de redes sem fio possibilitam o desenvolvimento de serviços e aplicativos para colaboração entre usuários móveis nos mais variados ambientes como em domicílios, lugares públicos, universidades, empresas, entre outros. Em uma sala de aula, acredita-se que o uso de dispositivos móveis (com capacidade de comunicação sem fio) torna o aprendizado mais interativo e estimulante. Este trabalho descreve um aplicativo distribuído, denominado iPH (Interactive Presenter for Handhelds), que possibilita o compartilhamento e a co-edição de transparências entre o instrutor e os aprendizes em sala de aula, e os componentes de middleware utilizados no desenvolvimento do mesmo. O iPH pode ser executado em diferentes tipos de dispositivos como tablet pcs, notebooks e handhelds (palmtops ou smartphones), e acessa informações de contexto computacional do dispositivo para efetuar auto-adaptações na sua funcionalidade, para entre outros, melhorar a interação com o usuário. / [en] The ongoing improvement of portable devices and the increasing ubiquity of wireless networks enable the development of services and applications for anyplace- any-time collaboration among mobile users in many different environments, such as at home, in public areas, in universities, in companies, among others. It is expected that the use of portable, wireless-enabled devices in classrooms improves the interaction and engagement in the learning process. This work describes a distributed application named iPH (Interactive Presenter for Handhelds) that supports the sharing and co-edition of presentations among an instructor and students of a classroom, as well as the middleware components used for the development of iPH. This system can be executed on a wide range of devices, such as tablets, notebooks and handhelds (palmtops or smartphones), and uses the device`s context information to adapt itself to improve, for example, the interaction with the user.
2

[pt] ESTRATÉGIAS PARA OTIMIZAR PROCESSOS DE ANOTAÇÃO E GERAÇÃO DE DATASETS DE SEGMENTAÇÃO SEMÂNTICA EM IMAGENS DE MAMOGRAFIA / [en] STRATEGIES TO OPTIMIZE ANNOTATION PROCESSES AND GENERATION OF SEMANTIC SEGMENTATION DATASETS IN MAMMOGRAPHY IMAGES

BRUNO YUSUKE KITABAYASHI 17 November 2022 (has links)
[pt] Com o avanço recente do uso de aprendizagem profunda supervisionada (supervised deep learning) em aplicações no ramo da visão computacional, a indústria e a comunidade acadêmica vêm evidenciando que uma das principais dificuldades para o sucesso destas aplicações é a falta de datasets com a suficiente quantidade de dados anotados. Nesse sentido aponta-se a necessidade de alavancar grandes quantidades de dados rotulados para que estes modelos inteligentes possam solucionar problemas pertinentes ao seu contexto para atingir os resultados desejados. O uso de técnicas para gerar dados anotados de maneira mais eficiente está sendo cada vez mais explorado, juntamente com técnicas para o apoio à geração dos datasets que servem de insumos para o treinamento dos modelos de inteligência artificial. Este trabalho tem como propósito propor estratégias para otimizar processos de anotação e geração de datasets de segmentação semântica. Dentre as abordagens utilizadas neste trabalho destacamos o Interactive Segmentation e Active Learning. A primeira, tenta melhorar o processo de anotação de dados, tornando-o mais eficiente e eficaz do ponto de vista do anotador ou especialista responsável pela rotulagem dos dados com uso de um modelo de segmentação semântica que tenta imitar as anotações feitas pelo anotador. A segunda, consiste em uma abordagem que permite consolidar um modelo deep learning utilizando um critério inteligente, visando a seleção de dados não anotados mais informativos para o treinamento do modelo a partir de uma função de aquisição que se baseia na estimação de incerteza da rede para realizar a filtragem desses dados. Para aplicar e validar os resultados de ambas as técnicas, o trabalho os incorpora em um caso de uso relacionado em imagens de mamografia para segmentação de estruturas anatômicas. / [en] With the recent advancement of the use of supervised deep learning in applications in the field of computer vision, the industry and the academic community have been showing that one of the main difficulties for the success of these applications is the lack of datasets with a sufficient amount of annotated data. In this sense, there is a need to leverage large amounts of labeled data so that these intelligent models can solve problems relevant to their context to achieve the desired results. The use of techniques to generate annotated data more efficiently is being increasingly explored, together with techniques to support the generation of datasets that serve as inputs for the training of artificial intelligence models. This work aims to propose strategies to optimize annotation processes and generation of semantic segmentation datasets. Among the approaches used in this work, we highlight Interactive Segmentation and Active Learning. The first one tries to improve the data annotation process, making it more efficient and effective from the point of view of the annotator or specialist responsible for labeling the data using a semantic segmentation model that tries to imitate the annotations made by the annotator. The second consists of an approach that allows consolidating a deep learning model using an intelligent criterion, aiming at the selection of more informative unannotated data for training the model from an acquisition function that is based on the uncertainty estimation of the network to filter these data. To apply and validate the results of both techniques, the work incorporates them in a use case in mammography images for segmentation of anatomical structures.
3

[en] HEURISTICS FOR DATA POINT SELECTION FOR LABELING IN SEMI-SUPERVISED AND ACTIVE LEARNING CONTEXTS / [pt] HEURÍSTICAS PARA SELEÇÃO DE PONTOS PARA SEREM ANOTADOS NO CONTEXTO DEAPRENDIZADO SEMI- SUPERVISIONADO E ATIVO

SONIA FIOL GONZALEZ 16 September 2021 (has links)
[pt] O aprendizado supervisionado é, hoje, o ramo do aprendizado de máquina central para a maioria das inovações nos negócios. A abordagem depende de ter grandes quantidades de dados rotulados, suficiente para ajustar funções com a precisão necessária. No entanto, pode ser caro obter dados rotulados ou criar os rótulos através de um processo de anotação. O aprendizado semisupervisionado (SSL) é usado para rotular com precisão os dados a partir de pequenas quantidades de dados rotulados utilizando técnicas de aprendizado não supervisionado. Uma técnica de rotulagem é a propagação de rótulos. Neste trabalho, usamos especificamente o algoritmo Consensus rate-based label propagation (CRLP). Este algoritmo depende do uma função de consenso para a propagação. Uma possível função de consenso é a matriz de co-associação que estima a probabilidade dos pontos i e j pertencem ao mesmo grupo. Neste trabalho, observamos que a matriz de co-associação contém informações valiosas para tratar esse tipo de problema. Quando nenhum dado está rotulado, é comum escolher aleatoriamente, com probabilidade uniforme, os dados a serem rotulados manualmente, a partir dos quais a propagação procede. Este trabalho aborda o problema de seleção de um conjunto de tamanho fixo de dados para serem rotulados manualmente que propiciem uma melhor precisão no algoritmo de propagação de rótulos. Três técnicas de seleção, baseadas em princípios de amostragem estocástica, são propostas: Stratified Sampling (SS), Probability (P), and Stratified Sampling - Probability (SSP). Eles são todos baseados nas informações embutidas na matriz de co-associação. Os experimentos foram realizados em 15 conjuntos de benchmarks e mostraram resultados muito interessantes. Não só, porque eles fornecem uma seleção mais equilibrada quando comparados a uma seleção aleatória, mas também melhoram os resultados de precisão na propagação de rótulos. Em outro contexto, essas estratégias também foram testadas dentro de um processo de aprendizagem ativa, obtendo também bons resultados. / [en] Supervised learning is, today, the branch of Machine Learning central to most business disruption. The approach relies on having amounts of labeled data large enough to learn functions with the required approximation. However, labeled data may be expensive, to obtain or to construct through a labeling process. Semi-supervised learning (SSL) strives to label accurately data from small amounts of labeled data and the use of unsupervised learning techniques. One labeling technique is label propagation. We use specifically the Consensus rate-based label propagation (CRLP) in this work. A consensus function is central to the propagation. A possible consensus function is a coassociation matrix that estimates the probability of data points i and j belong to the same group. In this work, we observe that the co-association matrix has valuable information embedded in it. When no data is labeled, it is common to choose with a uniform probability randomly, the data to manually label, from which the propagation proceeds. This work addresses the problem of selecting a fixed-size set of data points to label (manually), to improve the label propagation algorithm s accuracy. Three selection techniques, based on stochastic sampling principles, are proposed: Stratified Sampling (SP), Probability (P), and Stratified Sampling - Probability (SSP). They are all based on the information embedded in the co-association matrix. Experiments were carried out on 15 benchmark sets and showed exciting results. Not only because they provide a more balanced selection when compared to a uniform random selection, but also improved the accuracy results of a label propagation method. These strategies were also tested inside an active learning process in a different context, also achieving good results.
4

[en] GENERATION AND DETECTION OF OBJECTS IN DOCUMENTS BY DEEP LEARNING NEURAL NETWORK MODELS (DEEPDOCGEN) / [pt] GERAÇÃO E DETECÇÃO DE OBJETOS EM DOCUMENTOS POR MODELOS DE REDES NEURAIS DE APRENDIZAGEM PROFUNDA (DEEPDOCGEN)

LOICK GEOFFREY HODONOU 06 February 2025 (has links)
[pt] A eficácia dos sistemas de conversação homem-máquina, como chatbots e assistentes virtuais, está diretamente relacionada à quantidade e qualidade do conhecimento disponível para eles. Na era digital, a diversidade e a qualidade dos dados aumentaram significativamente, estando disponíveis em diversos formatos. Entre esses, o PDF (Portable Document Format) se destaca como um dos mais conhecidos e amplamente utilizados, adaptando-se a variados setores, como empresarial, educacional e de pesquisa. Esses arquivos contêm uma quantidade considerável de dados estruturados, como textos, títulos, listas, tabelas, imagens, etc. O conteúdo dos arquivos PDF pode ser extraído utilizando ferramentas dedicadas, como o OCR (Reconhecimento Ótico de Caracteres), o PdfMiner, Tabula e outras, que provaram ser adequadas para esta tarefa. No entanto, estas ferramentas podem deparar-se com dificuldades quando lidam com a apresentação complexa e variada dos documentos PDF. A exatidão da extração pode ser comprometida pela diversidade de esquemas, formatos não normalizados e elementos gráficos incorporados nos documentos, o que frequentemente leva a um pós-processamento manual. A visão computacional e, mais especificamente, a detecção de objetos, é um ramo do aprendizado de máquina que visa localizar e classificar instâncias em imagens utilizando modelos de detecção dedicados à tarefa, e está provando ser uma abordagem viável para acelerar o trabalho realizado por algoritmos como OCR, PdfMiner, Tabula, além de melhorar sua precisão. Os modelos de detecção de objetos, por serem baseados em aprendizagem profunda, exigem não apenas uma quantidade substancial de dados para treinamento, mas, acima de tudo, anotações de alta qualidade pois elas têm um impacto direto na obtenção de altos níveis de precisão e robustez. A diversidade de layouts e elementos gráficos em documentos PDF acrescenta uma camada adicional de complexidade, exigindo dados anotados de forma representativa para que os modelos possam aprender a lidar com todas as variações possíveis. Considerando o aspecto volumoso dos dados necessários para o treinamento dos modelos, percebemos rapidamente que o processo de anotação dos dados se torna uma tarefa tediosa e demorada que requer intervenção humana para identificar e etiquetar manualmente cada elemento relevante. Essa tarefa não é apenas demorada, mas também sujeita a erros humanos, o que muitas vezes exige verificações e correções adicionais. A fim de encontrar um meio-termo entre a quantidade de dados, a minimização do tempo de anotação e anotações de alta qualidade, neste trabalho propusemos um pipeline que, a partir de um número limitado de documentos PDF anotados com as categorias texto, título, lista, tabela e imagem recebidas como entrada, é capaz de criar novas layouts de documentos semelhantes com base no número desejado pelo usuário. Este pipeline vai mais longe em preenchendo com o conteúdo as novas layouts criadas, a fim de fornecer imagens de documentos sintéticos e suas respectivas anotações. Com sua estrutura simples, intuitiva e escalável, este pipeline pode contribuir para o active learning, permitindo assim aos modelos de detecção serem treinados continuamente, os tornando mais eficazes e robustos diante de documentos reais. Em nossas experiências, ao avaliar e comparar três modelos de detecção, observamos que o RT-DETR (Real-Time DEtection TRansformer) obteve os melhores resultados, atingindo uma precisão média (mean Average Precision, mAP) de 96,30 por cento, superando os resultados do Mask R-CNN (Region-based Convolutional Neural Networks) e Mask DINO (Mask DETR with Improved Denoising Anchor Boxes). A superioridade do RT-DETR indica seu potencial para se tornar uma solução de referência na detecção de características em documentos PDF. Esses resultados promissores abrem caminho para aplicações mais eficientes e confiáveis no processamento automático de documentos. / [en] The effectiveness of human-machine conversation systems, such as chat-bots and virtual assistants, is directly related to the amount and quality of knowledge available to them. In the digital age, the diversity and quality of data have increased significantly, being available in various formats. Among these, the PDF (Portable Document Format) stands out as one of the most well-known and widely used, adapting to various sectors, such as business, education, and research. These files contain a considerable amount of structured data, such as text, headings, lists, tables, images, etc. The content of PDF files can be extracted using dedicated tools, such as OCR (Optical Character Recognition), PdfMiner, Tabula and others, which have proven to be suitable for this task. However, these tools may encounter difficulties when dealing with the complex and varied presentation of PDF documents. The accuracy of extraction can be compromised by the diversity of layouts, non-standardized formats, and embedded graphic elements in the documents, often leading to manual post-processing. Computer vision, and more specifically, object detection, is a branch of machine learning that aims to locate and classify instances in images using models dedicated to the task. It is proving to be a viable approach to accelerating the work performed by algorithms like OCR, PdfMiner, Tabula and improving their accuracy. Object detection models, being based on deep learning, require not only a substantial amount of data for training but, above all, high-quality annotations, as they have a direct impact on achieving high levels of accuracy and robustness. The diversity of layouts and graphic elements in PDF documents adds an additional layer of complexity, requiring representatively annotated data so that the models can learn to handle all possible variations. Considering the voluminous aspect of the data needed for training the models, we quickly realize that the data annotation process becomes a tedious and time-consuming task requiring human intervention to manually identify and label each relevant element. This task is not only time-consuming but also subject to human error, often requiring additional checks and corrections. To find a middle ground between the amount of data, minimizing annotation time, and high-quality annotations, in this work, we proposed a pipeline that, from a limited number of annotated PDF documents with the categories text, title, list, table, and image as input, can create new document layouts similar to the desired number by the user. This pipeline goes further by filling the new created layouts with content to provide synthetic document images and their respective annotations. With its simple, intuitive, and scalable structure, this pipeline can contribute to active learning, allowing detection models to be continuously trained, making them more effective and robust in the face of real documents. In our experiments, when evaluating and comparing three detection models, we observed that the RT-DETR (Real-Time Detection Transformer) achieved the best results, reaching a mean Average Precision (mAP) of 96.30 percent, surpassing the results of Mask R-CNN (Region-based Convolutional Neural Networks) and Mask DINO (Mask DETR with Improved Denoising Anchor Boxes). The superiority of RT-DETR indicates its potential to become a reference solution in detecting features in PDF documents. These promising results pave the way for more efficient and reliable applications in the automatic processing of documents.

Page generated in 0.0426 seconds