• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] NAVIER-STOKES EM GPU / [pt] NAVIER-STOKES EM GPU

ALEX LAIER BORDIGNON 29 August 2006 (has links)
[pt] Nesse trabalho, mostramos como simular um fluido em duas dimensões em um domínio com fronteiras arbitrárias. Nosso trabalho é baseado no esquema stable fluids desenvolvido por Joe Stam. A implementação é feita na GPU (Graphics Processing Unit), permitindo velocidade de interação com o fluido. Fazemos uso da linguagem Cg (C for Graphics), desenvolvida pela companhia NVidia. Nossas principais contribuições são o tratamento das múltiplas fronteiras, onde aplicamos interpolação bilinear para atingir melhores resultados, armazenamento das condições de fronteira usa apenas um canal de textura, e o uso de confinamento de vorticidade. / [en] In this work we show how to simulate fluids in two dimensions in a domain with arbitrary bondaries. Our work is based on the stable fluid scheme developed by Jo Stam. The implementation is done in GPU (Graphics Processinfg Unit), thus allowing fluid interaction speed. We use the language Cg (C for Graphics) developed by the company Nvídia. Our main contributions are the treatment of domains with multiple boundaries, where we apply bilinear interpolation to obtain better results, the storage of the bondaty conditions in a unique texturre channel, and the use of vorticity confinement.
2

[pt] OTIMIZAÇÃO TOPOLÓGICA PARA PROBLEMAS DE ESCOAMENTO DE FLUIDOS NÃO NEWTONIANOS USANDO O MÉTODO DOS ELEMENTOS VIRTUAIS / [en] TOPOLOGY OPTIMIZATION FOR NON-NEWTONIAN FLUID-FLOW PROBLEMS USING THE VIRTUAL ELEMENT METHOD

MIGUEL ANGEL AMPUERO SUAREZ 28 August 2020 (has links)
[pt] Este trabalho apresenta aplicações da técnica de otimização topológica para problemas de escoamento com fluidos não Newtonianos, usando o método dos elementos virtuais (VEM) em domínios bidimensionais arbitrários. O objetivo é projetar a trajetória ótima, a partir da minimização da energia dissipativa, de um escoamento governado pelas equações de Navier-Stokes-Brinkman e do modelo não Newtoniano de Carreau-Yasuda. A abordagem de porosidade proposta por (Borrvall e Petersson, 2003) [1] é usada na formulação do problema de otimização topológica. Para resolver este problema numericamente é usado o método VEM, recentemente proposto. A principal característica que diferencia o VEM do método dos elementos finitos (FEM) é que as funções de interpolação no interior dos elementos não precisam ser computadas explicitamente. Isso ocorre porque a integração é feita em funções polinomiais e bases de ordem inferior, permitindo assim uma grande flexibilidade no que diz respeito ao uso de elementos não convexos. Portanto, o cálculo das matrizes e vetores elementares se reduz à avaliação de grandezas geométricas nos contornos desses elementos. Finalmente, são apresentados exemplos numéricos representativos para demonstrar a eficiência do VEM em comparação com o FEM e a aplicabilidade da otimização topológica para esta classe de problemas de escoamento. / [en] This work presents selected applications of topology optimization for non-Newtonian fluid flow problems using the virtual element method (VEM) in arbitrary two-dimensional domains. The objective is to design an optimal layout into a fluid flow domain to minimize dissipative energy governed by the Navier-Stokes-Brinkman and non-Newtonian Carreau-Yasuda model equations. The porosity approach proposed by (Borrvall and Petersson, 2003) [1] is used in the topology optimization formulation. To solve this problem numerically, the recently proposed VEM method is used. The key feature that distinguishes VEM from the standard finite element method (FEM) is that the interpolation functions in the interior of the elements do not need to be computed explicitly. This is because the integration is on lower-order polynomial and basis functions, and there is great flexibility by using a non-convex element. Therefore, the computation of the main element matrices and vectors are reduced to the evaluation of geometric quantities on the boundary of the elements. Finally, several numerical examples are provided to demonstrate the efficiency of the VEM compared to FEM and the applicability of the topology optimization to fluid flow problems.

Page generated in 0.0431 seconds