1 |
[en] LOW FLOW LIMIT IN SLOT COATING PROCESS OF POLYMERIC SOLUTIONS / [pt] LIMITE DE VAZÃO MÍNIMA DO PROCESSO DE REVESTIMENTO POR EXTRUSÃO DE SOLUÇÕES POLIMÉRICASOLDRICH JOEL ROMERO GUZMAN 21 October 2003 (has links)
[pt] O processo de revestimento por extrusão é usado na
manufatura de diversos produtos. A espessura da camada de
líquido depositada é determinada pela vazão de líquido e
pela velocidade do substrato, e independe das outras
variáveis de operação do processo. Um importante limite
de
operação deste processo é a espessura mínima que pode ser
depositada sobre um substrato a uma determinada
velocidade,
geralmente chamado de limite de vazão mínima. Para
líquidos
Newtonianos, o mecanismo que define este limite é o
balanço
de forças viscosas, de capilaridade e inerciais
no escoamento. A pesar da maioria dos líquidos usados em
processos de revestimento industriais serem soluções
poliméricas ou dispersões que possuem comportamento não
Newtoniano, a maioria das análises de limites de operação
do processo de revestimento por extrusão são restritas à
líquidos Newtonianos. No caso particular de soluções
poliméricas as tensões elásticas podem alterar o balanço
de
forças em diversas regiões do escoamento e
consequentemente
os limites de operação do processo. Neste trabalho o
limite de vazão mínima no caso de líquidos não
Newtonianos
é analisado teoricamente e experimentalmente. Os modelos
constitutivos de Oldroyd-B e Giesekus, que descrevem o
comportamento de soluções poliméricas diluídas,
em conjunto com as equações de conservação de massa e
quantidade de movimento são usados para descrever o
escoamento bidimensional que ocorre no processo de
revestimento por extrusão. O sistema de equações
diferenciais foi resolvido usando o método de elementos
finitos. Os resultados mostram como as propriedades
viscoelásticas influenciam a distribuição de tensão no
escoamento e o balanço de forças nas proximidades da
superfície livre à jusante da região de deposição. / [en] Slot coating is a common method in the manufacture of a
wide variety of products. The thickness of the coated
liquid layer is set by the flow rate fed to the coating die
and the speed of the substrate, and is independent of other
process variables. An important operating limit of slot
coating is the minimum thickness that can be coated at a
given substrate speed,generally referred to as the low-
flow limit. For Newtonian liquids, the mechanism that
defines this limit balances the viscous, capillary and
inertial forces in the flow. Although most of the liquids
coated industrially are polymeric solutions and dispersions
that are not Newtonian, most of the previous analyses of
operability limits in slot coating dealt only with
Newtonian liquids. In the case of liquids made non-
Newtonian by polymer viscoelasticity, stresses can alter
the force balance in various parts of the coating bead and
consequently the onset of instability. In this work, the
low-flow limit in cases of non-Newtonian liquids is
examined by both theory and experiment. The Oldroyd-B and
Giesekus constitutive equations that approximate
viscoelastic behavior of polymer solutions were used,
together with momentum and continuity equations, to model
two-dimensional flow in the downstream part of a slot
coating bead. The equation system was solved with the
Finite Element Method. The results show how the viscoelastic
properties can affect the stress field in the liquid and
the force balance near and at the downstream meniscus,
thereby illustrating how non-Newtonian behavior can alter
the flow instabilities that determine the coating window of
slot coating. The flows themselves were visualized by video
microscopy and the low-flow limit was found by observing,
at given substrate speed, the feed rate at which the flow
becomes unstable. Different solutions of low molecular
weight polyethylene glycol and high molecular weight
polyethylene oxide in water were used in order to evaluate
the effect of mildly viscoelastic behavior on the process.
|
2 |
[pt] DESLOCAMENTO DE LÍQUIDOS VISCOELÁSTICOS EM TUBOS CAPILARES / [en] DISPLACEMENT OF VISCOELASTIC LIQUIDS IN CAPILLARY TUBESERICK FABRIZIO QUINTELLA ANDRADE COELHO 06 January 2006 (has links)
[pt] O deslocamento de um líquido em um tubo capilar pela
injeção de um gás
ocorre em muitas situações, tais como na recuperação
avançada de petróleo,
no revestimento de conversores catalíticos e na moldagem
assistida por
injeção de gás. Geralmente o líquido deslocado é uma
solução polimérica
ou uma dispersão, que é não Newtoniana. Forças
viscoelásticas alteram o
balanço de forças em várias partes do escoamento e,
conseqüentemente, alteram a eficiência do deslocamento,
isto é, mudam a quantidade de líquido deixada na parede do
capilar. Modelos de tais escoamentos devem se basear em
teorias que levem em consideração o comportamento
diferenciado de líquidos
com microestrutura complexa, tanto no cisalhamento quanto
na extensão.
Além do mais, escoamentos de deslocamento envolvem uma
superfície livre,
e o domínio no qual as equações diferenciais são
resolvidas é desconhecido a priori, fazendo parte da
solução. Estas duas características tornam o
problema extremamente complexo. Este problema foi estudado
aqui tanto
experimentalmente quanto teoricamente. Os experimentos
consistiram da
visualização do escoamento e medição da massa deslocada
pela passagem
de uma bolha de gás através de um tubo capilar preenchido
por um líquido
viscoelástico. Várias soluções de baixo peso molecular de
Polietileno Glicol
(PEG) e de alto peso molecular de Óxido de Polietileno
(PEO) em água
foram usadas a fim de avaliar os efeitos do comportamento
viscoelástico no
escoamento. As propriedades reológicas das soluções foram
avaliadas tanto
em cisalhamento quanto em extensão. Na análise teórica, o
escoamento com
superfície livre bidimensional próximo µa interface gás-
líquido foi modelado
usando três equações diferenciais constitutivas distintas
que aproximam o
comportamento viscoelástico de soluções poliméricas
diluídas, as quais são
os modelos Oldroyd-B, FENE-P e FENE-CR, juntamente com as
equações
de conservação de massa e de quantidade de movimento
linear. O sistema
de equações foi resolvido pelo Método dos Elementos
Finitos. O sistema
de equações algébricas não-lineares resultante foi
resolvido pelo método de
Newton. Os resultados mostram o efeito do caráter
viscoelástico do líquido
na forma da superfície livre e a espessura do filme
líquido deixado na parede. / [en] Displacement of a liquid in a capillary tube by gas
injection occurs in many
situations, like enhanced oil recovery, coating of
catalytic converters and
gas-assisted injection molding. Generally the liquid being
displaced is a
polymeric solution or dispersion, which is not Newtonian.
Viscoelastic forces alter the force balance in various
parts of the flow and consequently
change the amount of liquid left attached to the capillary
wall. Models of
such flows must rely on theories that can account for the
different behavior
of microstructured liquids in simple shear and extensional
flow. Moreover,
displacement flows involve a free surface, and the domain
where the differential equations are posed is unknown a
priori being part of the solution.
These two characteristics make the problem extremely
complex. This problem was analyzed here both by
experiments and theory. The experiments
consisted of flow visualization and measurement of mass
displaced by a gas
bubble in a capillary tube filled with a viscoelastic
liquid. Various solutions of low molecular weight
Polyethylene Glycol (PEG) and high molecular
weight Polyethylene Oxide (PEO) in water were used in
order to evaluate
the effect of viscoelastic behavior on the flow. The
rheological properties
of the solutions were evaluated both in simple shear and
predominantly
extensional flows. In the theoretical analysis, the two-
dimensional free surface flow near the gas-liquid
interface was modelled using three different
differential constitutive equations that approximate
viscoelastic behavior of
dilute polymer solutions, namely Oldroyd-B, FENE-P and
FENE-CR, together with momentum and continuity equations.
The equation system was
solved with the Finite Element Method. The resulting non-
linear system of
algebraic equations was solved by Newton`s method. The
results show the
effect of the viscoelastic character of the liquid on the
free surface shape
and the film thickness attached to the capillary wall.
|
Page generated in 0.0272 seconds