• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] THE HOMOLOGY OF SOME ISOSPECTRAL MANIFOLDS / [pt] HOMOLOGIA DE VARIEDADES ISOESPECTRAIS

FELIPE DUARTE CARDOZO DE PINA 02 March 2010 (has links)
[pt] Para (Lambda) uma matriz diagonal real de espectro simples, consideramse O(Lambda), a variedade de matrizes reais, simétricas conjugadas a (Lambda), e Tau (Lambda), a variedade das matrizes tridiagonais em O(Lambda). Calcula-se as homologias das duas variedades, combinando técnicas de teoria de Morse e sistemas integráveis. Como conseqüência, mostra-se que a imersão de O(Lambda) no espaço vetorial de matrizes reais simétricas é tight e taut, o que tem implicações em teoria espectral numérica. / [en] For (Lambda) a real, diagonal matrix of simple spectrum, we consider O(lambda), the isospectral manifold of real, symmetric matrices conjugate to (Lambda), and (Tau)(Lambda), the isospectral manifold of tridiagonal matrices in O(Lambda).We compute the homologies of both manifolds, combining techniques of Morse theory and integrable systems. As a consequence, we show that the immersion of O(Lambda) in the vector space of real symmetric matrices is tight and taut, a fact with implications in numerical spectral theory.

Page generated in 0.0467 seconds