• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] GAMMA-GAMMA STATE SPACE MODELS: APPLICATION OF THE RAINFALL SERIES / [pt] MODELOS DE ESPAÇO DE ESTADOS GAMA-GAMA: APLICAÇÃO A UMA SÉRIE DE CHUVA

KATIA LORENA SAEZ CARRILLO 17 October 2003 (has links)
[pt] Esta tese apresenta o estudo de um modelo de espaço de estados para dados positivos, onde o processo observado é condicionalmente independente, dado um processo latente Gama Markov. O processo observado condicionado ao processo latente tem distribuição Gama. O modelo possibilita a inclusão de covariáveis,tanto através do processo latente, como do processo observado.O modelo obtido é log-linear e a estimação dos parâmetros de regressão é feita através de funções de estimação de Kalman. Os parâmetros de dispersão são estimados via estimadores de Pearson ajustados. São desenvolvidos alguns estudos de simulação e uma aplicação aos dados da série de chuva de Fortaleza, Ceará, onde são incorporados fatos estilizados da série (tendência, sazonalidade ou ciclos), bem como o efeito de variáveis explicativas (temperatura do nível do mar, pressão atmosférica, manchas solares). / [en] This thesis presents a study of a state space model for positive data where the observed process is conditionally independent given a latent process gamma Markov process. The observed process conditioned to the latent process has gamma distribution. The model facilitates the inclusion of as many covariates through the latent process as of the observed process.The obtained model is log-linear and the estimate of the regression parameters is made through Kalman estimating functions. The dispersion parameters are obtained via the adjusted Pearson estimation. Some simulation studies and an application are developed to the data of the series of rainfall of Fortaleza, Ceará, where they are incorporate stylized facts of the series (tendency, sazonalidade or cycles) are include as well as the effect of explanatory variables (temperature of the level of the sea, pressure, sunspots).

Page generated in 0.0238 seconds