• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] DESENVOLVIMENTO E COMPORTAMENTO MECÂNICO DE COMPÓSITOS GEOPOLIMÉRICOS TÊXTEIS REFORÇADOS COM FIBRA DE JUTA / [en] DEVELOPMENT AND MECHANICAL BEHAVIOR OF TEXTILE GEOPOLYMERIC COMPOSITES REINFORCED WITH JUTE FIBER

ANA CAROLINA CONSTANCIO TRINDADE 25 May 2017 (has links)
[pt] Geopolímeros podem ser descritos como materiais aluminossilicatos estáveis e sintetizados, cujas propriedades apresentadas em estudos anteriores sugerem diversas vantagens quando comparados aos materiais à base de cimento Portland. Como, por exemplo, alta resistência inicial e bom desempenho quando expostos a altas temperaturas. Este trabalho apresenta um estudo experimental acerca do comportamento mecânico de matrizes geopoliméricas reforçadas com tecidos bidirecionais de juta em temperatura ambiente e quando submetidas a temperaturas elevadas. Geopolímeros à base de metacaulim, sílica ativa e escória de alto-forno foram produzidos com diferentes tipos de agregados (areia e chamote). Ensaios de compressão, tração e flexão foram realizados a fim de se determinar a resposta mecânica das diferentes matrizes e compósitos, e seu comportamento de fissuração, antes e depois da exposição a altas temperaturas. A interface fibra-matriz também foi analisada por meio de ensaios de arrancamento. Todos os compósitos exibiram comportamento de strain/deflection-hardening e múltipla fissuração. No geral, as matrizes contendo escória apresentaram maiores resistências, enquanto as matrizes de sílica e as combinações da matriz de metacaulim com agregados alternativos apresentaram aumento na tenacidade dos compósitos, permitindo uma maior tolerância à temperatura. Análises de DRX, TG e MEV foram utilizadas para investigar as características químicas e microestruturais dos materiais estudados. / [en] Geopolymers may be described as stable and synthesized aluminosilicate materials whose properties presented in previous studies suggest several advantages when compared to materials based on Portland cement, such as, high initial strength and good performance when exposed to elevated temperatures. This work presents an experimental study about the mechanical behavior of geopolymeric matrices reinforced with bi-directional jute fabrics under controlled lab conditions and high temperatures. Geopolymers based on metakaolin, silica and blast furnace slag were produced with different types of aggregates (sand and chamotte). Compression, tensile and flexural tests were performed in order to determine the mechanical response of different matrices and composites, along with their cracking behavior, before and after exposure to high temperatures. The fiber-matrix interface was also analyzed by pullout tests. All composites exhibited strain/deflection-hardening and multiple cracking behavior. In general, the matrix containing slag and sand showed higher strengths. Silica matrices and combinations of the metacaulim matrix with alternative aggregates showed an increase in the composites toughness, allowing a higher temperature tolerance. XRD, TGA and SEM were used to investigate the chemical and microstructural characteristics of the studied materials.
2

[pt] EXPLORANDO A INFLUÊNCIA DE ALTAS TEMPERATURAS E PRESSÃO NAS PROPRIEDADES DE GEOPOLÍMEROS / [en] EXPLORING THE INFLUENCE OF HIGH TEMPERATURE AND PRESSURE ON GEOPOLYMER PROPERTIES

UMBERTO CASSARA DE C S SICILIANO 13 May 2024 (has links)
[pt] Geopolímeros (GPs), classificados como polissilicatos-aluminatos, representam polímeros inorgânicos ou cerâmicas quimicamente ligadas com diversas aplicações determinadas pela razão atômica Si:Al, incluindo: componentes resistentes ao fogo, selantes, argamassa para reforço de vigas e tamponamento de poços de petróleo. A exploração de GPs sob condições variadas de temperatura e/ou pressão ganhou impulso após 2001. A adição de chamotte à formulação GP ocorreu apenas em 2014, seguida de investigações subsequentes sobre o impacto da adição de nanotubos de carbono e nanoargila um ano depois. O objetivo principal desta tese foi avaliar a resistência à compressão do GP simples à base de potássio curado em temperaturas e pressões de até 200 graus C e 70 MPa, respectivamente. Esta avaliação incluiu análises comparativas com caracterizações microestruturais como porosimetria e termogravimetria. Inicialmente, o estudo avaliou os mecanismos de reação de diferentes formulações de GP e determinou os efeitos da lixiviação alcalina na evolução da resistência sob diversas condições de cura (seca e saturada). Os resultados identificaram a composição K-waterglass com SiO2/K2O=1,53 e H2O/K2O=8,69 como apresentando rápido ganho de resistência, baixa lixiviabilidade, e por isso foi selecionada. A temperatura de cura teve um impacto significativo nas propriedades finais, com demonstrando uma melhoria notável de 144 por cento na resistência à compressão a 50 graus C, e uma melhoria adicional de 37 por cento a 50 graus C sob 20 MPa, atribuída à maior densificação microestrutural. A tese também explorou o efeito da adição de partículas micrométricas (chamotte) e nanométricas (nanomemetacaulim, nanoargila e nanotubos de carbono) sob condições extremas de cura (150 graus C e 40 MPa). Resultados preliminares indicaram dispersão satisfatória de nanotubos de carbono usando uma técnica simples e de baixa energia. As adições individuais contribuíram para a melhoria do desempenho do GP, mas as adições híbridas superaram quaisquer resultados de adição separada, produzindo uma formulação com maior reatividade. Sob a cura a 150 graus C, o GP com adições híbridas exibiu uma melhoria notável de 350 por cento nas propriedades mecânicas em comparação com o GP simples. Sob pressão de 40 MPa, o desempenho mecânico foi minimamente afetado pelas adições híbridas, confirmando sua eficácia em alcançar as propriedades desejadas para aplicações de alta temperatura e pressão, incluindo refinamento de poros, aumento de resistência à flexão e redução de porosidade. / [en] Geopolymers (GPs), classified as polysilicate-aluminates, represent inorganic polymers or chemically bonded ceramics with diverse applications determined by the Si:Al atomic ratio, including: fire-resistant components, sealants, mortar for reinforcing beams and oil well plugging. The exploration of GPs under varying temperature and/or pressure conditions gained momentum post-2001. The addition of chamotte into GP formulation only occurred in 2014, followed by subsequent investigations into the impact of adding carbon nanotubes and nanoclay a year later. The primary objective of this thesis was to assess the compressive strength of plain potassium-based GP cured at temperatures and pressures of up to 200 degrees C and 70 MPa, respectively. This evaluation included comparative analysis with microstructural characterizations such as porosimetry and thermogravimetry. Initially, the study evaluated the reaction mechanisms of different GP formulations and determined the effects of alkali leaching on strength evolution under diverse curing conditions (dry and saturated). The results identified the K-waterglass composition with SiO2/K2O=1.53 and H2O/K2O=8.69 as presenting rapid strength gain, low leachability, and was thus selected. Curing temperature significantly impacted on the final properties, demonstrating a notable 144% improvement in compressive strength at 50 degrees C, and an additional 37 percent improvement at 50 degrees C under 20 MPa, attributed to enhanced microstructural densification. The thesis also explored the effect of adding micrometric (chamotte) and nanometric (nano-metakaolin, nanoclay and carbon nanotubes) particles under extreme curing conditions (150 degrees C and 40 MPa). Preliminary results indicated satisfactory dispersion of carbon nanotubes using a simple, low-energy technique. Individual additions contributed to GP performance improvement, yet hybrid additions surpassed any separate addition results, yielding a formulation with enhanced reactivity. Under 150 degrees C curing, GP with hybrid additions exhibited a remarkable 350 percent improvement in mechanical properties compared to plain GP. Under 40 MPa pressure, the mechanical performance was minimally affected by hybrid additions, confirming their efficacy in achieving the desired properties for high-temperature and pressure applications, including pore refinement, increased flexural strength, and reduced porosity.
3

[en] A STUDY ON THE MIXTURE DESIGN AND MECHANICAL PERFORMANCE OF STRAIN-HARDENING GEOPOLYMER COMPOSITES (SHGC) UNDER EXTREME CONDITIONS / [pt] UM ESTUDO SOBRE A DOSAGEM E O DESEMPENHO MECÂNICO DE COMPÓSITOS GEOPOLIMÉRICOS DO TIPO STRAIN-HARDENING (SHGC) SOB CONDIÇÕES EXTREMAS

ANA CAROLINA CONSTANCIO TRINDADE 04 November 2021 (has links)
[pt] Geopolímeros possuem uma pluralidade química em seu design que permite a obtenção de propriedades variadas dependendo da demanda, tanto em termos de materiais cerâmicos de alta tecnologia quanto no desenvolvimento de soluções construtivas. São obtidos a partir da combinação de precursores alumino silicatos e soluções alcalinas, com diferentes processos de endurecimento, dependendo das condições de cura e equilíbrio químico. No estado endurecido, apresentam um comportamento frágil, sendo geralmente reforçados com fibras e agregados na melhoria do desempenho mecânico. Por serem materiais relativamente novos, é necessário avaliar com precisão sua capacidade em condições usuais e extremas para atender a diversas demandas específicas do mercado. Tais condições incluem solicitações estáticas e dinâmicas, bem como a exposição a altas temperaturas, que são os principais pontos de análise deste estudo. Para isso, diferentes precursores, como metacaulim e cinzas volantes, e soluções alcalinas, à base de sódio e potássio, foram estudados quanto à reologia e ganho de resistência de acordo com o processo de cura utilizado. Esses foram parâmetros fundamentais na seleção de matrizes capazes de incorporar 2 por cento em vol. de fibras curtas de PVA e PE sintéticas. Os compósitos do tipo strain-hardening (SHGC) foram então caracterizados através de ensaios mecânicos típicos, tais como compressão, flexão, tração, arrancamento, em carregamentos estáticos e dinâmicos, e sob exposições regulares e de alta temperatura (até 200 graus C), sendo analisados posteriormente por meio de procedimentos típicos analíticos e de imagem. No geral, a combinação de metacaulim de alta reatividade com soluções alcalinas a base de sódio apresentou melhores performances em SHGC, com e sem a incorporação de agregados, atingindo ganhos de resistência e múltipla fissuração quando reforçado com ambas as fibras curtas de PVA e PE, sendo a última responsável pela maior efetividade mecânica do compósito quando exposto a carregamento quase-estáticos em de impacto. Esse comportamento, no entanto, não se repetiu ao ser exposto a temperaturas elevadas, com maiores reduções na resistência residual devido ao ponto de fusão do PE (150 graus C), em comparação a um maior valor para PVA (240 graus C), sendo então este mais efetivo em aplicações extremas deste tipo. Quando comparado a comportamentos típicos de SHCC, SHGC demonstrou uma maior eficiência tanto mecânica quanto térmica, apresentando resultados inéditos em carregamentos de impacto, gerando assim uma enorme quantidade de aplicações potenciais. / [en] Geopolymers possess a chemical plurality in their design that allow the achievement of varied properties depending on demand, both in terms of high-tech ceramic materials and development of constructive solutions. They are obtained from the combination of aluminosilicate precursors and alkaline solutions, with different hardening processes, depending on the curing conditions and chemical balance. In the hardened state, they present a fragile behavior, being then usually reinforced with fibers and aggregates aiming to improve their mechanical performance. As they are relatively new materials, there is a need to accurately assess their capacity under usual and extreme conditions to meet several specific market demands. Such extreme conditions include static and dynamic loading, as well as exposure to high temperatures, which are the major points of analysis in this study. For this, different precursors, such as metakaolin and fly ash, and alkaline solutions, based on sodium and potassium, were studied regarding rheology in the fresh state, and evolution of strength gain according to the curing process used. These were fundamental parameters in the selection of matrices able to achieve an adequate balance between fluidity and viscosity to incorporate 2 percent by volume of synthetic PVA and PE short fibers. The strain-hardening geopolymer composites (SHGC) were then characterized through typical mechanical tests, such as compression, flexural, tensile, pull-out, in quasi-static and impact loadings, and under regular and high temperature exposures (up to 200 C degrees), being further analyzed through imaging and analytical procedures. In general, high reactivity metakaolin combined with Na-based alkaline solutions demonstrated a superior SHGC performance, with and without aggregate incorporation, reaching stress gains and multiple cracking formation when reinforced with both PVA and PE short fibers, the latter being responsible for greater mechanical efficiency when exposed to quasi-static and impact loading. This behavior, however, was not reiterated when exposed to high temperatures, with higher residual strength reductions due to the melting point of PE (at 150 C degrees), opposed to an increased performance of PVA (240 C degrees), being thus more effective at such extreme application. When compared to typical SHCC behavior, SHGC reached greater efficiency both mechanically and thermally, showing unprecedented results in impact loading, thus demonstrating varied application potential.

Page generated in 0.0506 seconds