1 |
[en] NEW APPROACH TO GENERATING STREAMFLOW SCENARIO TO LONG-TERM ENERGETIC OPERATION PLANNING / [pt] NOVA ABORDAGEM PARA GERAÇÃO DE CENÁRIOS DE AFLUÊNCIAS NO PLANEJAMENTO DA OPERAÇÃO ENERGÉTICA DE MÉDIO PRAZOFERNANDO LUIZ CYRINO OLIVEIRA 20 April 2010 (has links)
[pt] O modelo autorregressivo periódico da família Box & Jenkins, PAR(p), é
empregado na modelagem e geração das séries de vazões hidrológicas e/ou de
energias naturais afluentes utilizadas no modelo de otimização do despacho
hidrotérmico no Brasil. Recentemente, alguns aspectos da modelagem têm sido
alvo de estudos e diversas pesquisas vêm sendo realizados. Inicialmente, este
trabalho visou o estudo da fase de identificação das ordens p dos modelos,
fundamental para a correta definição da estrutura de modelagem e para a geração
de cenários sintéticos. Atualmente, a identificação é feita com base na avaliação
da significância dos coeficientes da função de autocorrelação parcial (FACP),
baseados na aproximação assintótica de Quenouille. A proposta deste estudo foi a
aplicação da técnica de computação intensiva Bootstrap para estimar a real
significância dos referidos coeficientes. O segundo objetivo deste trabalho foi o
emprego da mesma técnica com vistas à geração de cenários. A metodologia
adotada atualmente ajusta uma distribuição Lognormal com três parâmetros para a
geração de ruídos aleatórios, o que parece causar uma não-linearidade indesejável
ao modelo original. Neste trabalho, os próprios resíduos gerados pelo modelo
PAR(p), quando aplicado às séries históricas, foram utilizados na geração dos
cenários. Os resultados mostraram que o Bootstrap levou à identificação de
ordens inferiores na maioria dos casos e que os cenários conservaram
satisfatoriamente as propriedades estatísticas das séries originais. Finalmente, os
resultados obtidos foram bastante satisfatórios, corroborando alguns pontos
levantados em estudos anteriores sobre a abordagem tradicional. / [en] The periodic autoregressive model, a particular structure of the Box &
Jenkins family, denoted by PAR(p), is employed to model the series of
hydrological streamflow used for estimating the operational costs of the Brazilian
hydro-thermal optimal dispatch. Recently, some aspects of this approach began to
be studied and several researches on this topic are being developed. This work
focused on the identification phase of the order "p" of the PAR(p), essential to the
correct definition of the model structure, as well as to generate synthetic scenarios
to be used in the optimization procedure. Nowadays, the identification is based on
evaluating the significance of the estimated partial autocorrelation coefficients
function (PACF), based on the asymptotic result of Quenouille. The purpose of
this study was on the application of a computer-intensive technique, called
Bootstrap, to estimate the real statistical significance of such the estimated. The
second goal of this study was use the Bootstrap technique in order to generate
synthetic scenarios. The current methodology uses an approach for noise
generation through a three parameters Lognormal distribution. Such approach
seems to cause an undesirable non-linearity in the model. In this work, the PAR
(p) resulted noises were used during the scenarios generation. The results showed
that the Bootstrap led to the identification of lower orders models, in comparison
with the traditional approach, in almost all cases. In addition, the scenarios
retained the statistical characteristics of the original series. The obtained results
were quite satisfactory, corroborating some points raised in previous studies about
the traditional approach.
|
2 |
[en] LONG MEMORY MODELS TO GENERATING STREAMFLOW SCENARIO / [pt] MODELOS DE MEMÓRIA LONGA PARA GERAÇÃO DE CENÁRIOS HIDROLÓGICOS SINTÉTICOSGUILHERME ARMANDO DE ALMEIDA PEREIRA 15 September 2011 (has links)
[pt] Este trabalho tem como objetivo o estudo das séries de energia natural
afluente (ENAs) por meio de modelos de memória longa, no intuito de gerar
cenários hidrológicos sintéticos. Séries temporais com memória longa são
definidas como séries que apresentam persistente dependência entre observações
afastadas por um longo período de tempo. Inicialmente procedeu-se uma análise
exploratória através da qual foi possível encontrar características de série
temporais com longa dependência. Os modelos empregados nesta dissertação
foram os SARFIMA (p,d.q)x(P,D.Q)s em que os parâmetros dˆ e Dˆ assumem
valores fracionários, para que seja possível a incorporação de efeitos de longa
dependência e/ou cíclicos. Também foi utilizada a técnica de computação
intensiva bootstrap em diversas etapas, dentre elas a construção de um teste não
paramétrico para significância dos parâmetros fracionários, assim como bootstrap
nos resíduos do modelo para a geração de séries hidrológicas sintéticas. Para
averiguar a adequabilidade dos cenários gerados, foram realizados testes
estatísticos de igualdade de médias, igualdade de variâncias, testes de aderência e
análise de sequências. Por meio destes, pode-se concluir que os modelos
empregados nesta dissertação conseguiram reproduzir de maneira satisfatória o
histórico disponível de ENAs. / [en] The aim of this thesis is to study the series of natural energy surging (NES)
through long memory models, whose interest is to fit models capable of
generating synthetic hydrological series. Time Series with long memory are
defined as a series which have persistent dependence between observations
separated by a long period of time. Firstly, we proceed to the exploration analysis
where we found particulars of long memory time series. The models employed is
this work were SARFIMA (p, d, q)x(P, D,Q)s where parameters d and D
assume fractional values so as to incorporate long memory and/or cycles effects. It
was also used a intensive computational technique called bootstrap in various
stages, among them the construction of a non-parametric test for the significant of
fractional parameters and the bootstrap in the residual models for generating
synthetic hydrological series. In order verify the accuracy of the scenarios
generated, statistical tests were performed for equal means, equal variance,
adherence test and sequence analysis. Through these, we can conclude that the
models used in this thesis could satisfactorily reproduce the history of natural
energy surging available.
|
3 |
[en] OIL REFINERY OPERATIONAL PLANNING UNDER UNCERTAINTY / [pt] PLANEJAMENTO OPERACIONAL DE REFINARIAS DE PETRÓLEO SOB INCERTEZA05 November 2021 (has links)
[pt] As companhias petrolíferas dedicam grande esforço para manter sua
rentabilidade e melhorar sua eficiência, principalmente frente às incertezas
presentes neste negócio. As empresas que pretendem manter a competitividade
precisam planejar suas operações cada vez melhor e com maior segurança. Em
face destas oportunidades e desafios, foi proposta no âmbito desta tese uma
abordagem estocástica para o problema de planejamento operacional de refinarias.
Neste sentido foi desenvolvido um modelo não-linear (NLP) de programação
estocástica com dois estágios. O modelo proposto representa os processos de
natureza não-linear presentes em uma refinaria, como as transformações químicas
e o cálculo de qualidade dos derivados. Devido ao elevado nível de complexidade
do problema NLP formulado, foram avaliados cinco métodos de solução
associados aos principais solvers comerciais. Uma metodologia de geração de
cenários e medidas de qualidade para árvore de cenários também foram definidas
para representar adequadamente as incertezas presentes neste problema. A
abordagem estocástica proposta neste trabalho foi avaliada considerando dados
reais de uma refinaria brasileira. Os resultados finais desta pesquisa devem
proporcionar avanços no processo de planejamento operacional de refinarias,
explorando a técnica de programação não-linear (NLP) e os novos solvers
disponíveis para problemas do tipo NLP. Pretende-se também gerar contribuições
na área de programação estocástica, definindo medidas de qualidade para árvore
de cenários que permitam uma melhor representação das incertezas e
consequentemente um melhor uso da abordagem estocástica. / [en] Oil companies make a great effort to maintain profitability and improve
efficiency, especially given the uncertainties present in this business. Companies
that intend to remain competitive need to plan their operations better and with
greater safety. In light of these opportunities and challenges, this thesis proposes a
stochastic approach to the refinery operational planning problem. In this sense, a
two-stage nonlinear stochastic programming model (NLP) developed. The
proposed model is intended to adequately represent nonlinear processes
encountered in a refinery, such as chemical transformations and calculations of
the properties of the oil derivatives. Due to the high level of complexity of the
NLP problem formulated, five solution methods associated with major
commercial solvers were evaluated. A methodology for generating scenarios and
quality measures for scenarios tree were also defined to properly represent the
uncertainties present in this problem. The stochastic approach proposed in the
present study was evaluated based on actual data from a Brazilian refinery. The
final results of this research should provide advances in the processes of refinery
operational planning exploiting the technique of nonlinear programming (NLP)
and new solvers available for NLP-type problems. Another objective was to
generate contributions in the field of stochastic programming by defining quality
measures for scenario trees that allow a better representation of uncertainties and,
consequently, better use of the stochastic approach.
|
4 |
[en] PAR(P) AND SINGULAR SPECTRUM ANALYSIS APPROACH IN THE MODELING AND SCENARIOS GENERATION / [pt] ABORDAGEM PAR(P) E SINGULAR SPECTRUM ANALYSIS NA MODELAGEM E GERAÇÃO DE CENÁRIOSMOISES LIMA DE MENEZES 12 August 2014 (has links)
[pt] Em função da predominância das fontes hidráulicas no sistema elétrico brasileiro, há uma grande incerteza na oferta futura de energia. Para lidar com a incerteza hidrológica, a política ótima de operação do sistema elétrico brasileiro é fruto de um sofisticado modelo de otimização estocástica no qual são considerados um amplo conjunto de séries sintéticas (cenários) de Energia Natural Afluente (ENA). Tradicionalmente, as séries sintéticas de ENA têm sido geradas por modelos periódicos autorregressivos PAR(p). Recentemente, o advento da energia eólica e o crescimento da sua participação no sistema elétrico brasileiro apontam para a necessidade de métodos capazes de gerar séries sintéticas de velocidade do vento. Assim, nesta tese propõe-se uma metodologia para geração de séries sintéticas baseada no uso combinado da modelagem PAR(p) e da análise espectral singular. A metodologia proposta é geral e pode ser usada na geração de séries sintéticas da ENA e da velocidade de vento. A análise espectral singular ou Singular Spectrum Analysis (SSA) é uma metodologia recente em séries temporais. Através de SSA pode-se extrair tendências ou sazonalidades bem como suavizar a série através da remoção de componentes ruidosas. SSA vem sendo aplicado com sucesso em diversas áreas do conhecimento como em Hidrologia e Economia. A Multi-channel Singular Spectrum Analysis (MSSA) é uma extensão natural do SSA quando aplicada a múltiplas séries simultaneamente. A metodologia proposta foi aplicada às séries de ENA dos quatro subsistemas elétricos (Nordeste, Norte, Sudeste/Centro-Oeste e Sul) e comparada ao modelo PAR(p) já existente. Adicionalmente, a metodologia proposta foi aplicada na geração de séries sintéticas de velocidade do vento em duas localidades situadas no Nordeste brasileiro. Os bons resultados alcançados indicam que a metodologia proposta pode ser utilizada na geração de séries sintéticas de ENA e de energia eólica consideradas nos modelos de otimização estocástica que auxiliam o planejamento da operação energética do sistema elétrico brasileiro. / [en] Due to the predominance of hydraulic sources in the Brazilian electrical system, there is a large uncertainty in future energy supply. To deal with hydrologic uncertainty, the optimal operation policy of the Brazilian electric system is the result of a sophisticated stochastic optimization where are considered a large set of synthetic series (scenarios) of Affluent Natural Energy (ENA). Traditionally, synthetic ENA series have been generated by periodic autoregressive models PAR (p). Recently, the advent of wind energy and its growth of participation in Brazilian electrical system indicate to the need for methods to generate synthetic series of wind speed. Thus, this thesis proposes a methodology for generating synthetic series based on the combined use of PAR (p) models and the Singular Spectrum Analysis (SSA). The proposed methodology is general and can be used to generate synthetic series of ENA and wind speed. SSA is a recent methodology in time series. Through SSA it can extract trends or seasonality and smoothing by removing the series of noisy components. SSA has been successfully applied in various fields of knowledge as in Hydrology and Economics. Multi-channel Singular Spectrum Analysis (MSSA) is a natural extension of the SSA when applied to multiple series simultaneously. The proposed methodology was applied to the ENA series of four electric subsystems (Northeast, North, Southeast / Midwest and South) and compared to the PAR (p) existing model. Additionally, the proposed methodology was applied to the generation of synthetic series of wind speed at two sites located in the Brazilian Northeast. The good results achieved demonstrate that the proposed methodology can be used to generate synthetic series of ENA and wind energy considered in stochastic optimization models that assist planning the operation of the Brazilian electric energy system.
|
Page generated in 0.0407 seconds