1 |
[en] LOCALLY CONVEX HYPERSURFACES IMMERSED IN HN × R / [pt] HIPERSUPERFÍCIES LOCALMENTE CONVEXAS IMERSAS EM HN X RINES SILVA DE OLIVEIRA 19 April 2012 (has links)
[pt] Em 1897, J. Hadamard provou um resultado sobre superfícies compactas,
localmente estritamente convexas no espaço euclidiano R3, mostrando que
tais superfícies são mergulhadas e homeomorfas à esfera. A partir daí mui-
tas generalizações foram feitas adaptando as hipóteses sobre a curvatura e
considerando novos espaços em que estas superfícies pudessem ser imersas
de forma que resultados análogos fossem obtidos. Seguindo este contexto,
este trabalho generaliza um resultado tipo Hadamard-Stoker para hiper-
superfícies localmente convexas imersas em Hn x R. Provamos que toda
hipersuperfície completa, conexa, imersa em Hn x R com segunda forma
fundamental positiva deve ser mergulhada, homeomorfa à esfera Sn ou a
Rn, e no segundo caso estudamos o comportamento do fim. / [en] In 1897, J. Hadamard proved a result about compact, locally strictly convex
surfaces in the Euclidean space R3 showing that such surfaces are embedded
and homeomorphic to the sphere. Since then many generalizations were
made adapting the assumptions about the curvature and considering new
spaces in which these surfaces could be immersed so that analogous results
were obtained. Following this context, this work generalizes a result of
Hadamard-Stoker type to locally convex hypersurfaces immersed in Hn×R.
We prove that every complete connected hypersurface immersed in Hn ×R
with positive second fundamental is embedded, homeomorphic to the sphere
Sn or to Rn, and in the second case we study the behavior of the end.
|
2 |
[en] MINIMAL AND CONSTANT MEAN CURVATURE EQUIVARIANT HYPERSURFACES IN S(N) AND H(N) / [pt] HIPERSUPERFÍCIES EQUIVARIANTES MÍNIMAS E COM CURVATURA MÉDIA CONSTANTE EM S(N) E H(N)MARIA CLARA SCHUWARTZ FERREIRA 18 July 2008 (has links)
[pt] Neste trabalho estudamos hipersuperfícies equivariantes
mínimas ou com curvatura média constante imersas em S(n)
e H(n). Tais hipersuperfícies são construídas a partir de
uma curva em S(2) e em H(2) respectivamente, chamada de
curva
geratriz. A equação da curvatura média constante reduz-se
a
um sistema de EDO sobre a curva geratriz, e graças à
simetria do problema, podemos eliminar uma variável desse
sistema. O sistema simplificado, por sua vez, admite uma
integral primeira. No caso esférico, encontramos
condições para obter curvas soluções fechadas, produzindo
assim exemplos de hipersuperfícies compactas mínimas ou
com
curvatura média constante em S(n). Discutimos também a
questão do mergulho dessas hipersuperfícies.
No caso hiperbólico, nos limitamos ao caso das
hipersuperfícies mínimas; observamos que as curvas
soluções
não são fechadas e tratamos da questão do mergulho. / [en] In this work we study equivariant hypersurfaces in S(n) and
H(n) which are minimal or have constant mean curvature.
These
hypersurfaces are described via a curve in S(2) and H(2)
respectively, called the generating curve. In the
equivariant case, the constant mean curvature equation
reduces to an ODE on the generating curve, which can be
reduced by one variable using the symmetry of the problem.
It then turns out that this reduced system admits a first
integral. In the spherical case, we find conditions
insuring closedness of the integral curves, and we deduce
the existence of compact hypersurfaces which are minimal or
have constant mean curvature. We also discuss the question
of embeddedness of these hypersurfaces. In the hyperbolic
case, we limit ourselves to the minimal case. We observe
that the curves are no longer closed and again we discuss
embededdness.
|
Page generated in 0.0441 seconds