• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR MEDICAL IMAGE CLASSIFIERS / [pt] INTELIGÊNCIA ARTIFICIAL EXPLICÁVEL PARA CLASSIFICADORES DE IMAGENS MÉDICAS

IAM PALATNIK DE SOUSA 02 July 2021 (has links)
[pt] A inteligência artificial tem gerado resultados promissores na área médica, especialmente na última década. Contudo, os modelos de melhor desempenho apresentam opacidade em relação ao seu funcionamento interno. Nesta tese, são apresentadas novas metodologias e abordagens para o desenvolvimento de classificadores explicáveis de imagens médicas. Dois principais métodos, Squaregrid e EvEx, foram desenvolvidos. O primeiro consiste em uma geração mais grosseira, porém rápida, de heatmaps explicativos via segmentações em grades quadrados, enquanto o segundo baseia-se em otimização multi-objetivo, baseada em computação evolucionária, visando ao ajuste fino de parâmetros de segmentação. Notavelmente, ambas as técnicas são agnósticas ao modelo, o que facilita sua utilização para qualquer tipo de classificador de imagens. O potencial destas abordagens foi avaliado em três estudos de caso de classificações médicas: metástases em linfonodos, malária e COVID-19. Para alguns destes casos foram analisados modelos de classificação existentes, publicamente disponíveis. Por outro lado, em outros estudos de caso, novos modelos tiveram que ser treinados. No caso do estudo de COVID-19, a ResNet50 treinada levou a F-scores acima de 0,9 para o conjunto de teste de uma competição para classificação de coronavirus, levando ao terceiro lugar geral. Adicionalmente, técnicas de inteligência artificial já existentes como LIME e GradCAM, bem como Vanilla, Smooth e Integrated Gradients também foram usadas para gerar heatmaps e possibilitar comparações. Os resultados aqui descritos ajudaram a demonstrar e preencher parcialmente lacunas associadas à integração das áreas de inteligência artificial explicável e medicina. Eles também ajudaram a demonstrar que as diferentes abordagens de inteligência artificial explicável podem gerar heatmaps que focam em características diferentes da imagem. Isso por sua vez demonstra a importância de combinar abordagens para criar um panorama mais completo sobre os modelos classificadores, bem como extrair informações sobre o que estes aprendem. / [en] Artificial Intelligence has generated promissing results for the medical area, especially on the last decade. However, the best performing models present opacity when it comes to their internal working. In this thesis, methodologies and approaches are presented for the develpoment of explainable classifiers of medical images. Two main methods, Squaregrid and EvEx, were developed. The first consistts in a rough, but fast, generation of heatmaps via segmentations in square grids, and the second in genetic multi objective optimizations aiming at the fine-tuning of segmentation parameters. Notably, both techniques are agnostic to the model,which facilitates their utilization for any kind of image classifier. The potential of these approaches was demonstrated in three case studies of medical classifications: lymph node mestastases, malária and COVID-19. In some of these cases, already existing classifier models were analyzed, while in some others new models were trained. For the COVID-19 study, the trained ResNet50 provided F-scores above 0.9 in a test set from a coronavirus classification competition, resulting in the third place overall. Additionally, already existing explainable artificial intelligence techniques, such as LIME and GradCAM, as well as Vanilla, Smooth and Integrated Gradients, were also used to generate heatmaps and enable comparisons. The results here described help to demonstrate and improve the gaps in integrating the areas of explainable artificial intelligence and medicine. They also aided in demonstrating that the different types of approaches in explainable artificial intelligence can generate heatmaps that focus on different characteristics of the image. This shows the importance of combining approaches to create a more complete overview of classifier models, as well as extracting informations about what they learned from data.
2

[en] A CRITICAL VIEW ON THE INTERPRETABILITY OF MACHINE LEARNING MODELS / [pt] UMA VISÃO CRÍTICA SOBRE A INTERPRETABILIDADE DE MODELOS DE APRENDIZADO DE MÁQUINA

JORGE LUIZ CATALDO FALBO SANTO 29 July 2019 (has links)
[pt] À medida que os modelos de aprendizado de máquina penetram áreas críticas como medicina, sistema de justiça criminal e mercados financeiros, sua opacidade, que impede que as pessoas interpretem a maioria deles, se tornou um problema a ser resolvido. Neste trabalho, apresentamos uma nova taxonomia para classificar qualquer método, abordagem ou estratégia para lidar com o problema da interpretabilidade de modelos de aprendizado de máquina. A taxonomia proposta que preenche uma lacuna existente nas estruturas de taxonomia atuais em relação à percepção subjetiva de diferentes intérpretes sobre um mesmo modelo. Para avaliar a taxonomia proposta, classificamos as contribuições de artigos científicos relevantes da área. / [en] As machine learning models penetrate critical areas like medicine, the criminal justice system, and financial markets, their opacity, which hampers humans ability to interpret most of them, has become a problem to be solved. In this work, we present a new taxonomy to classify any method, approach or strategy to deal with the problem of interpretability of machine learning models. The proposed taxonomy fills a gap in the current taxonomy frameworks regarding the subjective perception of different interpreters about the same model. To evaluate the proposed taxonomy, we have classified the contributions of some relevant scientific articles in the area.

Page generated in 0.0393 seconds