11 |
[en] ARTIFICIAL IMMUNE SYSTEMS APPLIED TO FAULT DETECTION / [pt] SISTEMAS IMUNOLÓGICOS ARTIFICIAIS APLICADOS À DETECÇÃO DE FALHASJORGE LUIS M DO AMARAL 03 May 2006 (has links)
[pt] Este trabalho investiga métodos de detecção de falhas
baseados em sistemas
imunológicos artificiais, especificamente aqueles baseados
no algoritmo de
seleção negativa (NSA) e em outras técnicas de
reconhecimento próprio/nãopróprio.
Inicialmente, foi proposto um esquema de representação
baseado em
hiperesferas com centros e raios variáveis e três modelos
capazes de gerar
detectores, com esta representação, de forma eficiente. O
primeiro modelo utiliza
algoritmos genéticos onde cada gene do cromossomo contém
um índice para um
ponto de uma distribuição quasi-aleatória que servirá como
centro do detector e
uma função decodificadora responsável por determinar os
raios apropriados. A
aptidão do cromossomo é dada por uma estimativa do volume
coberto através
uma integral de Monte Carlo. O segundo modelo utiliza o
particionamento
Quadtree para gerar o posicionamento dos detectores e o
valor dos raios. Este
modelo pode realizar o particionamento a partir de uma
função de detecção ou
através de divisões recursivas de um detector inicial que
ocupa todo o espaço. O
terceiro modelo é inspirado nas redes imunológicas. Neste
modelo, as células B
representam os detectores e a rede formada por eles dá a
posição e o raio de cada
detector. Experimentos com dados sintéticos e reais
demonstram a capacidade dos
algoritmos propostos e que eles apresentam melhorias nos
aspectos de
escalabilidade e desempenho na detecção de falhas. / [en] This work investigates fault detection methods based on
Artificial Immune
Systems, specifically the negative selection algorithm
(NSA) and other self/nonself
recognition techniques. First, there was proposed a
representation scheme
based on hyperspheres with variable center and radius, and
three models, which
are very capable to generate detectors, based on that
representation scheme, in an
effective way. The first model employs Genetic Algorithms
where each
chromosome gene represents an index to a point in a quasi-
random distribution,
that will serve as a detector center, a decoder function
will be responsible to
determine the appropriate radius. The chromosome fitness
is given by a valuation
of the covered volume, which is calculated through a Monte
Carlo integral. The
second model uses the Quadtree space partition technique
to generate the
detectors positions and their radius. The space partition
could be done by using a
detection function or by recursive divisions of an initial
detector that occupies the
whole space. In third model, inspired on immune networks,
the B cells represent
the detectors and the network that is established by them
gives the location and
radius of each detector. Experiments with syntetic and
real data show that the
proposed algorithms improve scalability and perform better
in fault detection.
|
12 |
[en] ARTIFICIAL NEURAL NETWORKS APPLIED TO INTRUSION DETECTION ON TCP/IP NETWORKS / [pt] REDES NEURAIS ARTIFICIAIS APLICADAS À DETECÇÃO DE INTRUSÃO EM REDES TCP/IPRENATO MAIA SILVA 25 October 2005 (has links)
[pt] Ataques e intrusões são uma ameaça constante para empresas
e
organizações interconectadas através de redes de pacotes e
da Internet.
Ferramentas tradicionais de detecção de ataques e
intrusões dependem de
conhecimento prévio sobre as técnicas de ataque não sendo
capazes de detectar
novas técnicas de ataques. Este trabalho investiga a
aplicação de redes neurais
artificiais no auxílio à detecção de intrusão em redes de
pacotes TCP/IP.
Utilizando a capacidade de generalização das redes
neurais, espera-se que o
sistema detecte novos ataques mantendo uma alta taxa de
acertos. É empregado
também técnica de comitê de redes neurais especialistas
para obtenção de maior
precisão e menor taxa alarmes falsos. / [en] Computer attacks and intrusions poses significant threats
to companies and
organizations interconnected through packet networks and
the Internet. Most
current approaches to intrusion detection rely on previous
knowledge of attack
patterns and are not capable of detecting new intrusion
techniques. This work
presents the application of artificial neural networks as
a component of an
intrusion detection system. Exploring neural networks
generalization capabilities
the system should be able to detect new attack patterns
and sustain a high
detection rate. Neural networks ensembles are also used in
order to achieve higher
accuracy and lower false-positive rates.
|
13 |
[en] INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN / [pt] INFERÊNCIA DA QUALIDADE DE PRODUTOS DE DESTILAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS E FILTRO DE KALMAN ESTENDIDOLEONARDO GUILHERME CAETANO CORREA 19 December 2005 (has links)
[pt] Atualmente cresce o interesse científico e industrial na elaboração de
métodos de controle não lineares. Porém, estes modelos costumam ter difícil
implementação e um custo elevado até que se obtenha uma ferramenta de
controle confiável. Desta forma, estudos na área de métodos de apoio à decisão
procuram desenvolver aplicações inteligentes com custos reduzidos, capazes de
executar controles industriais avançados com excelentes resultados, como no
caso da indústria petroquímica. Na destilação de derivados de petróleo, por
exemplo, é comum fazer uso de análises laboratoriais de amostras para
identificar se uma substância está com suas características físico-químicas
dentro das normas internacionais de produção. Além disso, o laudo pericial desta
análise permite regular os instrumentos da planta de produção para que se
consiga um controle mais acurado do processo e, conseqüentemente, um
produto final com maior qualidade. Entretanto, apesar da análise laboratorial ter
maior acurácia nos resultados que avaliam a qualidade do produto final, exige,
às vezes, muitas horas de análise, o que retarda o ajuste dos equipamentos de
produção, reduzindo a eficiência do processo e aumentando o tempo de
produção de certos produtos, que precisam ter sua composição, posteriormente,
corrigida com outros reagentes. Outra desvantagem está relacionada aos custos
de manutenção e calibração dos instrumentos localizados na área de produção,
pois, como estes equipamentos estão instalados em ambientes hostis,
normalmente sofrem uma degradação acelerada, o que pode gerar leituras de
campo erradas, dificultando a ação dos operadores. Em contrapartida, dentre os
métodos inteligentes mais aplicados em processos industriais químicos,
destacam-se as redes neurais artificiais. Esta estrutura se inspira nos neurônios
biológicos e no processamento paralelo do cérebro humano, tendo assim a
capacidade de armazenar e utilizar o conhecimento experimental que for a ela
apresentado. Apesar do bom resultado que a estrutura de redes neurais gera,
existe uma desvantagem relacionada à necessidade de re-treinamento da rede
quando o processo muda seu ponto de operação, ou seja, quando a matériaprima
sofre algum tipo de mudança em suas características físico-químicas.
Como solução para este problema, foi elaborado um método híbrido que busca
reunir as vantagens de uma estrutura de redes neurais com a habilidade de um
filtro estocástico, conhecido por filtro de Kalman estendido. Em termos práticos,
o filtro atua em cima dos pesos sinápticos da rede neural, atualizando os
mesmos em tempo real e permitindo assim que o sistema se adapte
constantemente às variações de mudança de processo. O sistema também faz
uso de pré-processamentos específicos para eliminar ruídos dos instrumentos de
leitura, erros de escalas e incompatibilidade entre os sinais de entrada e saída
do sistema, que foram armazenados em freqüências distintas; o primeiro em
minutos e o segundo em horas. Além disso, foram aplicadas técnicas de seleção
de variáveis para melhorar o desempenho da rede neural no que diz respeito ao
erro de inferência e ao tempo de processamento. O desempenho do método foi
avaliado em cada etapa elaborada através de diferentes grupos de testes
utilizados para verificar o que cada uma delas agregou ao resultado final. O teste
mais importante, executado para avaliar a resposta da metodologia proposta em
relação a uma rede neural simples, foi o de mudança de processo. Para isso, a
rede foi submetida a um grupo de teste com amostras dos sinais de saída
somados a um sinal tipo rampa. Os experimentos mostraram que o sistema,
utilizando redes neurais simples, apresentou um resultado com erros MAPE em
torno de 1,66%. Por outro lado, ao utilizar redes neurais associadas ao filtro de
Kalman estendido, o erro cai à metade, ficando em torno de 0,8%. Isto comprova
que, além do filtro de Kalman não destruir a qualidade da rede neural original,
ele consegue adaptá-la a mudanças de processo, permitindo, assim, que a
variável de saída seja inferida adequadamente sem a necessidade de retreinamento
da rede. / [en] Nowadays, scientific and industrial interest on the
development of nonlinear
control systems increases day after day. However, before
these models
become reliable, they must pass through a hard and
expensive implementation
process. In this way, studies involving decision support
methods try to develop
low cost intelligent applications to build up advanced
industrial control systems
with excellent results, as in the petrochemical industry.
In the distillation of oil
derivatives, for example, it is very common the use of
laboratorial sample
analysis to identify if a substance has its physical-
chemistry characteristics in
accordance to international production rules. Besides, the
analyses results allow
the adjustment of production plant instruments, so that
the process reaches a
thorough control, and, consequently, a final product with
higher quality. However,
although laboratory analyses are more accurate to evaluate
final product quality,
sometimes it demands many hours of analysis, delaying the
adjustments in the
production equipment. In this manner, the process
efficiency is reduced and
some products have its production period increased because
they should have its
composition corrected with other reagents. Another
disadvantage is the
equipments´ maintenance costs and calibration, since these
instruments are
installed in hostile environments that may cause
unaccurate field measurements,
affecting also operator´s action. On the other hand, among
the most applied
intelligent systems in chemical industry process are the
artificial neural networks.
Their structure is based on biological neurons and in the
parallel processing of
the human brain. Thus, they are capable of storing and
employing experimental
knowledge presented to it earlier. Despite good results
presented by neural
network structures, there is a disadvantage related to the
need for retraining
whenever the process changes its operational point, for
example, when the raw
material suffers any change on its physical-chemistry
characteristics. The
proposed solution for this problem is a hybrid method that
joins the advantages of
a neural network structure with the ability of a
stochastic filter, known as
extended Kalman filter. This filter acts in the synaptic
weights, updating them online and allowing the system to
constantly adapt itself to process changes. It also
uses specific pre-processing methods to eliminate scale
mistakes, noises in
instruments readings and incompatibilities between system
input and output,
which are measured with different acquisition frequencies;
the first one in minutes
and the second one in hours. Besides, variable selection
techniques were used
to enhance neural network performance in terms of
inference error and
processing time. The method´s performance was evaluated in
each process step
through different test groups used to verify what each
step contributes to the final
result. The most important test, executed to analyse the
system answer in
relation to a simple neural network, was the one which
simulated process
changes. For that end, the network was submitted to a test
group with output
samples added to a ramp signal. Experiments demonstrated
that a system using
simple neural networks presented results with MAPE error
of about 1,66%. On
the other hand, when using neural networks associated to
an extended Kalman
filter, the error decreases to 0,8%. In this way, it´s
confirmed that Kalman filter
does not destroy the original neural network quality and
also adapts it to process
changes, allowing the output inference without the
necessity of network
retraining.
|
14 |
[en] DESIGN OF ORGANIC LIGHT-EMITTING DIODES SUPPORTED BY COMPUTACIONAL INTELLIGENCE TECHNIQUES / [pt] PROJETO DE DIODOS ORGÂNICOS EMISSORES DE LUZ COM O AUXÍLIO DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONALCARLOS AUGUSTO FEDERICO DE FARIA ROCHA COSTA 10 September 2018 (has links)
[pt] Esta dissertação trata da investigação, simulação e otimização da estrutura de Diodos Orgânicos Emissores de Luz Multicamadas (ML-OLEDs) através da utilização de técnicas da Inteligência Computacional. Além disso, um desses métodos, chamado Otimização por Colônia de Formigas (ACO), foi implementado com base em um modelo proposto na literatura e aplicado pela primeira vez na otimização de diodos orgânicos. OLEDs são dispositivos optoeletrônicos nanométricos fabricados a partir de materiais semicondutores
orgânicos. Ao contrário das tecnologias tradicionais, eles conjugam elevada luminescência e baixo consumo energético. Na fabricação de um OLED, o número configurações possíveis é quase ilimitado, em função da quantidade de parâmetros que se pode variar. Isso faz com que determinação da arquitetura ótima torne-se uma tarefa não trivial. Para simular os OLEDs foram empregados dois modelos distintos de simulação. Assim, as Redes Neurais Artificiais (RNA) foram empregadas com o objetivo de emular um dos simuladores e acelerar o cálculo da densidade de corrente. Os Algoritmos Genéticos (AG) foram aplicados na determinação dos valores ótimos de espessura das camadas, mobilidades dos portadores de carga e concentração dos materiais orgânicos em OLEDs com duas camadas, enquanto o ACO foi aplicado para encontrar os valores de concentração em OLEDs com duas e cinco camadas, constituindo assim três estudos de caso. Os resultados encontrados foram promissores, sobretudo no caso das espessuras,
onde houve uma confirmação experimental do dispositivo com duas camadas. / [en] This dissertation deals with the research, simulation and optimization of the structure of Multilayer Organic Light Emitting Diodes (ML-OLEDs) by using Computational Intelligence techniques. In addition, one of these methods, called Ant Colony Optimization (ACO), was implemented based on a model proposed in the literature and applied for the first time in the optimization of organic diodes. OLEDs are nanometric optoelectronic devices fabricated from organic semiconducting materials. Unlike traditional technologies, they combine high luminance and low power consumption. In the manufacturing of an OLED, the number of possible configurations is almost unlimited due to the number of parameters that can modified. Because of this the determination of the optimal architecture becomes a non-trivial task. Two different simulation models were used to simulate the OLEDs. Thus, the Artificial Neural Networks (ANN) were employed in order to work as the proxy of the commercial simulator and to accelerate the calculation of the current density. The Genetic Algorithms (GA) were applied to determine the optimal values of thickness of the layers, the charge carrier mobility and the concentration of the organic materials in OLEDs with two layers, while the ACO was applied to find the values of concentration in OLEDs with two and five layers, thus establishing three case studies. The employed strategy has proved to be promising, since it has show good results for two case studies, especially for the optimization of the thickness, where there was an
experimental confirmation of the bilayer device.
|
15 |
[en] PATCH LOAD RESISTANCE USING COMPUTATIONAL INTELLIGENCE TECHNIQUES / [pt] COMPORTAMENTO DE VIGAS DE AÇO SUJEITAS A CARGAS CONCENTRADAS ATRAVÉS DE TÉCNICAS DE INTELIGÊNCIA COMPUTACIONALELAINE TOSCANO FONSECA FALCAO DA SILVA 15 January 2004 (has links)
[pt] As cargas concentradas em vigas de aço são freqüentemente
encontradas na prática. Nas situações onde o local de
aplicação da carga é fixo, enrijecedores transversais de
alma podem ser usados para aumentar a sua resistência, mas
devem ser evitados por razões econômicas. Para cargas
móveis, é fundamental conhecer a resistência última das
almas não enrijecidas. Diversas teorias foram
desenvolvidas para este problema, mas ainda assim, o erro
das fórmulas de previsão é superior a 40%. Duas são as
causas desta dificuldade de se encontrar uma equação mais
precisa: o grande número de parâmetros que influenciam o
comportamento de uma viga sujeita a cargas concentradas, e
o número insuficiente de dados experimentais presentes na
literatura. Por outro lado, o colapso da estrutura pode
ocorrer por: plastificação, flambagem global da alma,
enrugamento (crippling) ou uma combinação destes estados
limites. Apesar disto, nenhum estudo foi desenvolvido para
avaliar a participação total ou parcial de cada
comportamento no colapso. As redes neurais são modelos
computacionais inspirados na estrutura do cérebro, que
apresentam características humanas como o aprendizado por
experiência e a generalização do conhecimento a partir dos
exemplos apresentados. Estas características permitiram,
em estudos preliminares, a utilização das redes neurais na
previsão da carga última de vigas de aço sujeitas a
cargas concentradas. A Lógica Nebulosa tem como objetivo
modelar o modo aproximado de raciocínio, tentando imitar a
habilidade humana de tomar decisões racionais em um
ambiente de incerteza e imprecisão. Deste modo, a Lógica
Nebulosa é uma técnica inteligente que fornece um
mecanismo para manipular informações imprecisas, como
conceitos de esbeltez, compacidade, flexibilidade e
rigidez, além de estabelecer limites mais graduais entre
os fenômenos físicos do problema. Os Algoritmos Genéticos
foram inspirados no princípio Darwiniano da evolução das
espécies (sobrevivência dos mais aptos e mutações) e na
genética. São algoritmos probabilísticos, que fornecem um
mecanismo de busca paralela e adaptativa, e têm sido
empregados em diversos problemas de otimização. Este
trabalho é a continuação do estudo desenvolvido na
dissertação de mestrado (Fonseca, 1999) e tem o objetivo
de propor um sistema de avaliação do comportamento
estrutural de cargas concentradas, através de uma
identificação da influência dos diversos parâmetros na
carga e nos tipos de comportamento resultantes
(plastificação, enrugamento e flambagem global),
estabelecendo limites mais flexíveis entre cada um destes.
Esta análise será executada empregando um sistema neuro-
fuzzy (híbrido de redes neurais e de lógica nebulosa).
Para viabilizar esta análise, torna-se necessária a
apresentação de dados de treinamento onde o comportamento
estrutural é conhecido. Este trabalho também apresenta um
estudo de otimização das fórmulas de projeto existentes
empregando algoritmos genéticos. Os resultados obtidos
neste trabalho contribuem para, no futuro, o
desenvolvimento de uma fórmula de projeto mais precisa. De
posse desta nova fórmula, uma sugestão para sua
incorporação em normas de projeto de estruturas de aço
poderá ser feita, garantindo, desta forma, um
dimensionamento mais seguro e econômico. / [en] Concentrated loads on steel beams are frequently found in
engineering practice. In situations where the load
application point is fixed, transversal web stiffeners can
be used to provide an adequate resistance, but for
economic reasons should be avoided whenever possible. For
moving loads, the knowledge of the unstiffened web
resistance becomes imperative. Many theories were
developed for a better understanding of the problem,
however, a 40% error is still present in the current
design formulas. A more accurate design formula for this
structural problem is very difficult to be obtained, due
to the influence of several interdependent parameters and
to the insufficient number of experiments found in
literature. On the other hand, the structural collapse can
be associated to: web yielding, web buckling, web
crippling or by their combined influence. Despite this
fact, no investigations were found in literature to access
their partial of global influence on the beam patch load
resistance Neural networks were inspired in the brain
structure in order to present human characteristics such
as: learning from experience; and generalization of new
data from a current set of standards. Preliminary studies
used the neural networks potential to forecast the
ultimate load of steel beams subjected to concentrated
loads. The main aim of Fuzzy Logic is to model the complex
approximated way of inference, trying to represent the
human ability of making sensible decisions when facing
uncertainties. Thus, fuzzy logic is an artificial
intelligence technique capable of generating a mechanism
for treating inaccurate and incomplete information such
as: slenderness, flexibility and stiffness, still being
capable of establishing gradual boundaries among the
physical phenomena involved. Genetic algorithms are
inspired on the Darwins principle of the species
evolution and genetics. They are probabilistic algorithms
that generate a mechanism of parallel and adaptive best
fit survival principle and their reproduction and have
been long used in several optimisation problems. This work
extends the research developed in a previous MSc. program
(Fonseca, 1999) and intends to evaluate and investigate
the structural behaviour of steel beams subjected to
concentrated loads, identifying the influence of several
related parameters. This will be achieved by the use of a
neuro-fuzzy system, able to model the intrinsic
relationships between the related parameters. The proposed
system aim is to relate the physical and geometrical
variables that govern the ultimate load with its
associated physical behaviour (web yielding, web crippling
and web buckling), being capable of establishing gradual
boundaries among the physical phenomena involved. This
investigation was focused on the development of a neuro
fuzzy system. The proposed neuro fuzzy system was trained
with data where the collapse mechanism were properly
identified validating its results. This investigation also
presents a study of patch load design formulae optimization
based on genetic algorithm principles. The obtained
results may help the future development of a more accurate
design formula, that could be incorporated in steel
structures design codes, allowing a safer and economical
design.
|
16 |
[en] HIERARCHICAL FUZZY INFERENCE SYSTEMS APPLIED TO HUMAN RELIABILITY ASSESSMENT / [pt] SISTEMAS DE INFERÊNCIA FUZZY HIERÁRQUICOS APLICADOS À CARACTERIZAÇÃO DA CONFIABILIDADE HUMANANICHOLAS PINHO RIBEIRO 09 June 2015 (has links)
[pt] A maioria dos estudos existentes em controle de qualidade de processos focam no desempenho de máquinas e ferramentas. Assim, estes já contam com bons métodos para serem controlados. Contudo, erros humanos em potencial estão presentes em todos os processos industriais que contenham a relação homem-máquina, fazendo com que a necessidade de se avaliar a qualidade do desempenho humano seja de igual importância. A abordagem para se avaliar quão suscetível à falha humana estão tais processos baseiam-se em probabilidades de erro, supondo que o desempenho humano funciona da mesma maneira que o desempenho de máquinas, ou em PSFs (Performance Shaping Factors), variáveis representativas de características de desempenho humano. Embora esta última abordagem seja mais eficiente, ainda existem críticas a sua falta de contextualização: tais características são avaliadas separadamente uma das outras, e independentemente da tarefa que o operador esteja realizando. Sistemas de Inferência Fuzzy (SIFs) permitem que variáveis lingüísticas sejam avaliadas em conjunto, isto é, passa a ser possível criar um modelo que assimile as nuances da variação do comportamento de um PSF concomitantemente com a alteração de outro PSF. Dessa forma, a caracterização da confiabilidade humana, considerando que diversos PSFs afetam no desempenho dos demais, pode ser satisfeita ao se fazer uso de SIFs interligados seqüencialmente - SIFs hierárquicos. Para se contextualizar a caracterização da confiabilidade humana por tarefa realizada, necessita-se que os PSFs pertinentes a cada determinada tarefa sejam medidos novamente e realimentados ao sistema (desenvolvido nesta dissertação). O SIF geral (composto por nove camadas de SIFs hierárquicos) foi testado com dados hipotéticos e dados reais de operadores e tarefas de uma empresa do setor elétrico brasileiro. Os resultados encontrados foram satisfatórios e evidenciaram que a Lógica Fuzzy, na forma de SIFs hierárquicos, pode ser utilizada para caracterizar a confiabilidade humana, com a vantagem de fazê-lo enquanto seu contexto é considerado. / [en] Most of existing studies in quality control focus on machinery performance. There are effective and advanced control methods to deal with that. However, potential human errors are present in every industrial process operated by humans. Therefore, evaluating the quality of human performance becomes as important as evaluate machinery s. The approach to evaluate how much processes are susceptible to human error are based on error probabilities, by assuming that human performance is similar to machinery performance, or on PSFs (Performance Shaping Factors) – variables representing human features. Although this based approach is more efficient, there are still criticisms about its lack of context awareness: those features are evaluated separately from one another, and regardless of which task the employee is performing. Fuzzy Inference Systems (FISs) allow linguistic variables to be evaluated simultaneously, thus making it possible to develop a method that gathers the nuances of behavioral changes of a PSF whilst another PSF varies. With this method, and considering that different PSFs affect the performance of others, human reliability can be assessed through the use of sequentially interconnected FISs – Hierarchical Fuzzy Inference Systems. In order to contextualize this assessment by tasks, each of the PSFs that affects each task will have to be measured and fed into the system (as developed within this dissertation) once per task and per employee. The main FIS (which contains nine layers of hierarchical FISs) was tested by using both hypothetical and real data from operators and tasks of a Brazilian electricity company. Results were satisfactory and attested that Fuzzy Logic, in the form of hierarchical FISs, can be used to assess human reliability, with the advantage of also taking the context into account.
|
17 |
[en] COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR VISUAL SELF-LOCALIZATION AND MAPPING OF MOBILE ROBOTS / [pt] LOCALIZAÇÃO E MAPEAMENTO DE ROBÔS MÓVEIS UTILIZANDO INTELIGÊNCIA E VISÃO COMPUTACIONALNILTON CESAR ANCHAYHUA ARESTEGUI 18 October 2017 (has links)
[pt] Esta dissertação introduz um estudo sobre os algoritmos de inteligência computacional para o controle autônomo dos robôs móveis, Nesta pesquisa, são desenvolvidos e implementados sistemas inteligentes de controle de um robô móvel construído no Laboratório de Robótica da PUC-Rio, baseado numa modificação do robô ER1. Os experimentos realizados consistem em duas etapas: a primeira etapa de simulação usando o software Player-Stage de simulação do robô em 2-D onde foram desenvolvidos os algoritmos de navegação usando as técnicas de inteligência computacional; e a segunda etapa a implementação dos
algoritmos no robô real. As técnicas implementadas para a navegação do robô móvel estão baseadas em algoritmos de inteligência computacional como são redes neurais, lógica difusa e support vector machine (SVM) e para dar suporte visual ao robô móvel foi implementado uma técnica de visão computacional
chamado Scale Invariant Future Transform (SIFT), estes algoritmos em conjunto fazem um sistema embebido para dotar de controle autônomo ao robô móvel. As simulações destes algoritmos conseguiram o objetivo, mas na implementação surgiram diferenças muito claras respeito à simulação pelo tempo que demora em processar o microprocessador. / [en] This theses introduces a study on the computational intelligence algorithms for autonomous control of mobile robots, In this research, intelligent systems are developed and implemented for a robot in the Robotics Laboratory of PUC-Rio, based on a modiÞcation of the robot ER1. The verification consist of two stages: the first stage includes simulation using Player-Stage software for simulation of the robot in 2-D with the developed of artiÞcial intelligence; an the second stage, including the implementation of the algorithms in the real robot. The techniques implemented for the navigation of the mobile robot are based on algorithms of computational intelligence as neural networks, fuzzy logic and support vector machine (SVM); and to give visual support to the mobile robot was implemented the visual algorithm called Scale Invariant Future Transform (SIFT), these algorithms in set makes an absorbed system to endow with independent control the mobile robot. The simulations of these algorithms had obtained the objective
but in the implementation clear differences had appeared respect to the simulation, it just for the time that delays in processing the microprocessor.
|
18 |
[en] STRUCTURAL BEHAVIOUR OF PRESTRESSED STAYED STEEL COLUMNS / [pt] COMPORTAMENTO ESTRUTURAL DE COLUNAS DE AÇO ESTAIADAS E PROTENDIDASRICARDO RODRIGUES DE ARAUJO 25 October 2017 (has links)
[pt] Colunas de aço estaiadas e protendidas são conhecidas como excelente solução em escoramento de grandes estruturas, como colunas de coberturas de lonas tensionadas, etc. Este trabalho apresenta uma série de ensaios experimentais tridimensionais em escala real desenvolvidos para determinação do comportamento estrutural de colunas de aço estaiadas e protendidas. Foram estudadas as variações no nível de protensão e na rigidez dos estais, além de descrever como os ensaios experimentais das três colunas de aço estaiadas são realizados: compreendendo os materiais utilizados; um novo sistema de medição de força nos estais; os passos e dificuldades na montagem das três colunas e o sistema de protensão aplicado. Existem alguns parâmetros que influenciam diretamente na resistência dessas colunas estaiadas, como por exemplo, a altura da coluna, o diâmetro externo, entre outros. Devido ao comportamento complexo deste tipo de colunas e ao grande esforço computacional para simulação do comportamento estrutural, através de uma análise paramétrica, optou-se por utilizar um projeto de experimentos junto com redes neurais a fim de extrapolar e obter novos resultados para carga crítica do sistema estrutural sem a necessidade de análise por programas de elementos finitos. De forma a complementar a tese, realizou-se um estudo do comportamento do sistema estrutural sujeito a ações dinâmicas através do programa de elementos finitos ANSYS com o objetivo de determinar as frequências naturais associadas aos seus modos de vibração. Também foi estudada a aplicação de um carregamento súbito para determinação do fator de amplificação dinâmico da coluna de aço estaiada e protendida. / [en] Prestressed steel columns are known as an efficient structural solution for great variety of temporary or permanent supporting systems for large span spatial frames and tensile surface structures. This work presents of full-scale three-dimensional tests carriedout for the assessment of structural behaviour of prestressed stayed steel columns. It was studied the effect prestress force level, stiffness of column braces and stays. Test setup and a new force measuring system for the column stays is fully described. Prestressed stayed steel columns have their strength dependant of parameters like: length, hollow section diameter, brace length and stiffness and axial stiffness of stays. Due to the complex behaviour of such columns that demands great computational effort for numerical simulations required for a parametric analysis it was used an experiment design tool coupled with neural network techniques employed to generate new data for the prestressed column buckling load. A study of the dynamic behaviour of prestressed columns using the finite element package ANSYS was carried-out in order to determine the column natural frequencies and their associated vibration modes. It was also studied the application of sudden loads to determine the dynamic amplification factor of this type of prestressed stayed steel column.
|
Page generated in 0.0417 seconds