• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 18
  • 10
  • 10
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] ARTIFICIAL IMMUNE SYSTEMS APPLIED TO FAULT DETECTION / [pt] SISTEMAS IMUNOLÓGICOS ARTIFICIAIS APLICADOS À DETECÇÃO DE FALHAS

JORGE LUIS M DO AMARAL 03 May 2006 (has links)
[pt] Este trabalho investiga métodos de detecção de falhas baseados em sistemas imunológicos artificiais, especificamente aqueles baseados no algoritmo de seleção negativa (NSA) e em outras técnicas de reconhecimento próprio/nãopróprio. Inicialmente, foi proposto um esquema de representação baseado em hiperesferas com centros e raios variáveis e três modelos capazes de gerar detectores, com esta representação, de forma eficiente. O primeiro modelo utiliza algoritmos genéticos onde cada gene do cromossomo contém um índice para um ponto de uma distribuição quasi-aleatória que servirá como centro do detector e uma função decodificadora responsável por determinar os raios apropriados. A aptidão do cromossomo é dada por uma estimativa do volume coberto através uma integral de Monte Carlo. O segundo modelo utiliza o particionamento Quadtree para gerar o posicionamento dos detectores e o valor dos raios. Este modelo pode realizar o particionamento a partir de uma função de detecção ou através de divisões recursivas de um detector inicial que ocupa todo o espaço. O terceiro modelo é inspirado nas redes imunológicas. Neste modelo, as células B representam os detectores e a rede formada por eles dá a posição e o raio de cada detector. Experimentos com dados sintéticos e reais demonstram a capacidade dos algoritmos propostos e que eles apresentam melhorias nos aspectos de escalabilidade e desempenho na detecção de falhas. / [en] This work investigates fault detection methods based on Artificial Immune Systems, specifically the negative selection algorithm (NSA) and other self/nonself recognition techniques. First, there was proposed a representation scheme based on hyperspheres with variable center and radius, and three models, which are very capable to generate detectors, based on that representation scheme, in an effective way. The first model employs Genetic Algorithms where each chromosome gene represents an index to a point in a quasi- random distribution, that will serve as a detector center, a decoder function will be responsible to determine the appropriate radius. The chromosome fitness is given by a valuation of the covered volume, which is calculated through a Monte Carlo integral. The second model uses the Quadtree space partition technique to generate the detectors positions and their radius. The space partition could be done by using a detection function or by recursive divisions of an initial detector that occupies the whole space. In third model, inspired on immune networks, the B cells represent the detectors and the network that is established by them gives the location and radius of each detector. Experiments with syntetic and real data show that the proposed algorithms improve scalability and perform better in fault detection.
12

[en] ARTIFICIAL NEURAL NETWORKS APPLIED TO INTRUSION DETECTION ON TCP/IP NETWORKS / [pt] REDES NEURAIS ARTIFICIAIS APLICADAS À DETECÇÃO DE INTRUSÃO EM REDES TCP/IP

RENATO MAIA SILVA 25 October 2005 (has links)
[pt] Ataques e intrusões são uma ameaça constante para empresas e organizações interconectadas através de redes de pacotes e da Internet. Ferramentas tradicionais de detecção de ataques e intrusões dependem de conhecimento prévio sobre as técnicas de ataque não sendo capazes de detectar novas técnicas de ataques. Este trabalho investiga a aplicação de redes neurais artificiais no auxílio à detecção de intrusão em redes de pacotes TCP/IP. Utilizando a capacidade de generalização das redes neurais, espera-se que o sistema detecte novos ataques mantendo uma alta taxa de acertos. É empregado também técnica de comitê de redes neurais especialistas para obtenção de maior precisão e menor taxa alarmes falsos. / [en] Computer attacks and intrusions poses significant threats to companies and organizations interconnected through packet networks and the Internet. Most current approaches to intrusion detection rely on previous knowledge of attack patterns and are not capable of detecting new intrusion techniques. This work presents the application of artificial neural networks as a component of an intrusion detection system. Exploring neural networks generalization capabilities the system should be able to detect new attack patterns and sustain a high detection rate. Neural networks ensembles are also used in order to achieve higher accuracy and lower false-positive rates.
13

[en] INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN / [pt] INFERÊNCIA DA QUALIDADE DE PRODUTOS DE DESTILAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS E FILTRO DE KALMAN ESTENDIDO

LEONARDO GUILHERME CAETANO CORREA 19 December 2005 (has links)
[pt] Atualmente cresce o interesse científico e industrial na elaboração de métodos de controle não lineares. Porém, estes modelos costumam ter difícil implementação e um custo elevado até que se obtenha uma ferramenta de controle confiável. Desta forma, estudos na área de métodos de apoio à decisão procuram desenvolver aplicações inteligentes com custos reduzidos, capazes de executar controles industriais avançados com excelentes resultados, como no caso da indústria petroquímica. Na destilação de derivados de petróleo, por exemplo, é comum fazer uso de análises laboratoriais de amostras para identificar se uma substância está com suas características físico-químicas dentro das normas internacionais de produção. Além disso, o laudo pericial desta análise permite regular os instrumentos da planta de produção para que se consiga um controle mais acurado do processo e, conseqüentemente, um produto final com maior qualidade. Entretanto, apesar da análise laboratorial ter maior acurácia nos resultados que avaliam a qualidade do produto final, exige, às vezes, muitas horas de análise, o que retarda o ajuste dos equipamentos de produção, reduzindo a eficiência do processo e aumentando o tempo de produção de certos produtos, que precisam ter sua composição, posteriormente, corrigida com outros reagentes. Outra desvantagem está relacionada aos custos de manutenção e calibração dos instrumentos localizados na área de produção, pois, como estes equipamentos estão instalados em ambientes hostis, normalmente sofrem uma degradação acelerada, o que pode gerar leituras de campo erradas, dificultando a ação dos operadores. Em contrapartida, dentre os métodos inteligentes mais aplicados em processos industriais químicos, destacam-se as redes neurais artificiais. Esta estrutura se inspira nos neurônios biológicos e no processamento paralelo do cérebro humano, tendo assim a capacidade de armazenar e utilizar o conhecimento experimental que for a ela apresentado. Apesar do bom resultado que a estrutura de redes neurais gera, existe uma desvantagem relacionada à necessidade de re-treinamento da rede quando o processo muda seu ponto de operação, ou seja, quando a matériaprima sofre algum tipo de mudança em suas características físico-químicas. Como solução para este problema, foi elaborado um método híbrido que busca reunir as vantagens de uma estrutura de redes neurais com a habilidade de um filtro estocástico, conhecido por filtro de Kalman estendido. Em termos práticos, o filtro atua em cima dos pesos sinápticos da rede neural, atualizando os mesmos em tempo real e permitindo assim que o sistema se adapte constantemente às variações de mudança de processo. O sistema também faz uso de pré-processamentos específicos para eliminar ruídos dos instrumentos de leitura, erros de escalas e incompatibilidade entre os sinais de entrada e saída do sistema, que foram armazenados em freqüências distintas; o primeiro em minutos e o segundo em horas. Além disso, foram aplicadas técnicas de seleção de variáveis para melhorar o desempenho da rede neural no que diz respeito ao erro de inferência e ao tempo de processamento. O desempenho do método foi avaliado em cada etapa elaborada através de diferentes grupos de testes utilizados para verificar o que cada uma delas agregou ao resultado final. O teste mais importante, executado para avaliar a resposta da metodologia proposta em relação a uma rede neural simples, foi o de mudança de processo. Para isso, a rede foi submetida a um grupo de teste com amostras dos sinais de saída somados a um sinal tipo rampa. Os experimentos mostraram que o sistema, utilizando redes neurais simples, apresentou um resultado com erros MAPE em torno de 1,66%. Por outro lado, ao utilizar redes neurais associadas ao filtro de Kalman estendido, o erro cai à metade, ficando em torno de 0,8%. Isto comprova que, além do filtro de Kalman não destruir a qualidade da rede neural original, ele consegue adaptá-la a mudanças de processo, permitindo, assim, que a variável de saída seja inferida adequadamente sem a necessidade de retreinamento da rede. / [en] Nowadays, scientific and industrial interest on the development of nonlinear control systems increases day after day. However, before these models become reliable, they must pass through a hard and expensive implementation process. In this way, studies involving decision support methods try to develop low cost intelligent applications to build up advanced industrial control systems with excellent results, as in the petrochemical industry. In the distillation of oil derivatives, for example, it is very common the use of laboratorial sample analysis to identify if a substance has its physical- chemistry characteristics in accordance to international production rules. Besides, the analyses results allow the adjustment of production plant instruments, so that the process reaches a thorough control, and, consequently, a final product with higher quality. However, although laboratory analyses are more accurate to evaluate final product quality, sometimes it demands many hours of analysis, delaying the adjustments in the production equipment. In this manner, the process efficiency is reduced and some products have its production period increased because they should have its composition corrected with other reagents. Another disadvantage is the equipments´ maintenance costs and calibration, since these instruments are installed in hostile environments that may cause unaccurate field measurements, affecting also operator´s action. On the other hand, among the most applied intelligent systems in chemical industry process are the artificial neural networks. Their structure is based on biological neurons and in the parallel processing of the human brain. Thus, they are capable of storing and employing experimental knowledge presented to it earlier. Despite good results presented by neural network structures, there is a disadvantage related to the need for retraining whenever the process changes its operational point, for example, when the raw material suffers any change on its physical-chemistry characteristics. The proposed solution for this problem is a hybrid method that joins the advantages of a neural network structure with the ability of a stochastic filter, known as extended Kalman filter. This filter acts in the synaptic weights, updating them online and allowing the system to constantly adapt itself to process changes. It also uses specific pre-processing methods to eliminate scale mistakes, noises in instruments readings and incompatibilities between system input and output, which are measured with different acquisition frequencies; the first one in minutes and the second one in hours. Besides, variable selection techniques were used to enhance neural network performance in terms of inference error and processing time. The method´s performance was evaluated in each process step through different test groups used to verify what each step contributes to the final result. The most important test, executed to analyse the system answer in relation to a simple neural network, was the one which simulated process changes. For that end, the network was submitted to a test group with output samples added to a ramp signal. Experiments demonstrated that a system using simple neural networks presented results with MAPE error of about 1,66%. On the other hand, when using neural networks associated to an extended Kalman filter, the error decreases to 0,8%. In this way, it´s confirmed that Kalman filter does not destroy the original neural network quality and also adapts it to process changes, allowing the output inference without the necessity of network retraining.
14

[en] DESIGN OF ORGANIC LIGHT-EMITTING DIODES SUPPORTED BY COMPUTACIONAL INTELLIGENCE TECHNIQUES / [pt] PROJETO DE DIODOS ORGÂNICOS EMISSORES DE LUZ COM O AUXÍLIO DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONAL

CARLOS AUGUSTO FEDERICO DE FARIA ROCHA COSTA 10 September 2018 (has links)
[pt] Esta dissertação trata da investigação, simulação e otimização da estrutura de Diodos Orgânicos Emissores de Luz Multicamadas (ML-OLEDs) através da utilização de técnicas da Inteligência Computacional. Além disso, um desses métodos, chamado Otimização por Colônia de Formigas (ACO), foi implementado com base em um modelo proposto na literatura e aplicado pela primeira vez na otimização de diodos orgânicos. OLEDs são dispositivos optoeletrônicos nanométricos fabricados a partir de materiais semicondutores orgânicos. Ao contrário das tecnologias tradicionais, eles conjugam elevada luminescência e baixo consumo energético. Na fabricação de um OLED, o número configurações possíveis é quase ilimitado, em função da quantidade de parâmetros que se pode variar. Isso faz com que determinação da arquitetura ótima torne-se uma tarefa não trivial. Para simular os OLEDs foram empregados dois modelos distintos de simulação. Assim, as Redes Neurais Artificiais (RNA) foram empregadas com o objetivo de emular um dos simuladores e acelerar o cálculo da densidade de corrente. Os Algoritmos Genéticos (AG) foram aplicados na determinação dos valores ótimos de espessura das camadas, mobilidades dos portadores de carga e concentração dos materiais orgânicos em OLEDs com duas camadas, enquanto o ACO foi aplicado para encontrar os valores de concentração em OLEDs com duas e cinco camadas, constituindo assim três estudos de caso. Os resultados encontrados foram promissores, sobretudo no caso das espessuras, onde houve uma confirmação experimental do dispositivo com duas camadas. / [en] This dissertation deals with the research, simulation and optimization of the structure of Multilayer Organic Light Emitting Diodes (ML-OLEDs) by using Computational Intelligence techniques. In addition, one of these methods, called Ant Colony Optimization (ACO), was implemented based on a model proposed in the literature and applied for the first time in the optimization of organic diodes. OLEDs are nanometric optoelectronic devices fabricated from organic semiconducting materials. Unlike traditional technologies, they combine high luminance and low power consumption. In the manufacturing of an OLED, the number of possible configurations is almost unlimited due to the number of parameters that can modified. Because of this the determination of the optimal architecture becomes a non-trivial task. Two different simulation models were used to simulate the OLEDs. Thus, the Artificial Neural Networks (ANN) were employed in order to work as the proxy of the commercial simulator and to accelerate the calculation of the current density. The Genetic Algorithms (GA) were applied to determine the optimal values of thickness of the layers, the charge carrier mobility and the concentration of the organic materials in OLEDs with two layers, while the ACO was applied to find the values of concentration in OLEDs with two and five layers, thus establishing three case studies. The employed strategy has proved to be promising, since it has show good results for two case studies, especially for the optimization of the thickness, where there was an experimental confirmation of the bilayer device.
15

[en] PATCH LOAD RESISTANCE USING COMPUTATIONAL INTELLIGENCE TECHNIQUES / [pt] COMPORTAMENTO DE VIGAS DE AÇO SUJEITAS A CARGAS CONCENTRADAS ATRAVÉS DE TÉCNICAS DE INTELIGÊNCIA COMPUTACIONAL

ELAINE TOSCANO FONSECA FALCAO DA SILVA 15 January 2004 (has links)
[pt] As cargas concentradas em vigas de aço são freqüentemente encontradas na prática. Nas situações onde o local de aplicação da carga é fixo, enrijecedores transversais de alma podem ser usados para aumentar a sua resistência, mas devem ser evitados por razões econômicas. Para cargas móveis, é fundamental conhecer a resistência última das almas não enrijecidas. Diversas teorias foram desenvolvidas para este problema, mas ainda assim, o erro das fórmulas de previsão é superior a 40%. Duas são as causas desta dificuldade de se encontrar uma equação mais precisa: o grande número de parâmetros que influenciam o comportamento de uma viga sujeita a cargas concentradas, e o número insuficiente de dados experimentais presentes na literatura. Por outro lado, o colapso da estrutura pode ocorrer por: plastificação, flambagem global da alma, enrugamento (crippling) ou uma combinação destes estados limites. Apesar disto, nenhum estudo foi desenvolvido para avaliar a participação total ou parcial de cada comportamento no colapso. As redes neurais são modelos computacionais inspirados na estrutura do cérebro, que apresentam características humanas como o aprendizado por experiência e a generalização do conhecimento a partir dos exemplos apresentados. Estas características permitiram, em estudos preliminares, a utilização das redes neurais na previsão da carga última de vigas de aço sujeitas a cargas concentradas. A Lógica Nebulosa tem como objetivo modelar o modo aproximado de raciocínio, tentando imitar a habilidade humana de tomar decisões racionais em um ambiente de incerteza e imprecisão. Deste modo, a Lógica Nebulosa é uma técnica inteligente que fornece um mecanismo para manipular informações imprecisas, como conceitos de esbeltez, compacidade, flexibilidade e rigidez, além de estabelecer limites mais graduais entre os fenômenos físicos do problema. Os Algoritmos Genéticos foram inspirados no princípio Darwiniano da evolução das espécies (sobrevivência dos mais aptos e mutações) e na genética. São algoritmos probabilísticos, que fornecem um mecanismo de busca paralela e adaptativa, e têm sido empregados em diversos problemas de otimização. Este trabalho é a continuação do estudo desenvolvido na dissertação de mestrado (Fonseca, 1999) e tem o objetivo de propor um sistema de avaliação do comportamento estrutural de cargas concentradas, através de uma identificação da influência dos diversos parâmetros na carga e nos tipos de comportamento resultantes (plastificação, enrugamento e flambagem global), estabelecendo limites mais flexíveis entre cada um destes. Esta análise será executada empregando um sistema neuro- fuzzy (híbrido de redes neurais e de lógica nebulosa). Para viabilizar esta análise, torna-se necessária a apresentação de dados de treinamento onde o comportamento estrutural é conhecido. Este trabalho também apresenta um estudo de otimização das fórmulas de projeto existentes empregando algoritmos genéticos. Os resultados obtidos neste trabalho contribuem para, no futuro, o desenvolvimento de uma fórmula de projeto mais precisa. De posse desta nova fórmula, uma sugestão para sua incorporação em normas de projeto de estruturas de aço poderá ser feita, garantindo, desta forma, um dimensionamento mais seguro e econômico. / [en] Concentrated loads on steel beams are frequently found in engineering practice. In situations where the load application point is fixed, transversal web stiffeners can be used to provide an adequate resistance, but for economic reasons should be avoided whenever possible. For moving loads, the knowledge of the unstiffened web resistance becomes imperative. Many theories were developed for a better understanding of the problem, however, a 40% error is still present in the current design formulas. A more accurate design formula for this structural problem is very difficult to be obtained, due to the influence of several interdependent parameters and to the insufficient number of experiments found in literature. On the other hand, the structural collapse can be associated to: web yielding, web buckling, web crippling or by their combined influence. Despite this fact, no investigations were found in literature to access their partial of global influence on the beam patch load resistance Neural networks were inspired in the brain structure in order to present human characteristics such as: learning from experience; and generalization of new data from a current set of standards. Preliminary studies used the neural networks potential to forecast the ultimate load of steel beams subjected to concentrated loads. The main aim of Fuzzy Logic is to model the complex approximated way of inference, trying to represent the human ability of making sensible decisions when facing uncertainties. Thus, fuzzy logic is an artificial intelligence technique capable of generating a mechanism for treating inaccurate and incomplete information such as: slenderness, flexibility and stiffness, still being capable of establishing gradual boundaries among the physical phenomena involved. Genetic algorithms are inspired on the Darwins principle of the species evolution and genetics. They are probabilistic algorithms that generate a mechanism of parallel and adaptive best fit survival principle and their reproduction and have been long used in several optimisation problems. This work extends the research developed in a previous MSc. program (Fonseca, 1999) and intends to evaluate and investigate the structural behaviour of steel beams subjected to concentrated loads, identifying the influence of several related parameters. This will be achieved by the use of a neuro-fuzzy system, able to model the intrinsic relationships between the related parameters. The proposed system aim is to relate the physical and geometrical variables that govern the ultimate load with its associated physical behaviour (web yielding, web crippling and web buckling), being capable of establishing gradual boundaries among the physical phenomena involved. This investigation was focused on the development of a neuro fuzzy system. The proposed neuro fuzzy system was trained with data where the collapse mechanism were properly identified validating its results. This investigation also presents a study of patch load design formulae optimization based on genetic algorithm principles. The obtained results may help the future development of a more accurate design formula, that could be incorporated in steel structures design codes, allowing a safer and economical design.
16

[en] HIERARCHICAL FUZZY INFERENCE SYSTEMS APPLIED TO HUMAN RELIABILITY ASSESSMENT / [pt] SISTEMAS DE INFERÊNCIA FUZZY HIERÁRQUICOS APLICADOS À CARACTERIZAÇÃO DA CONFIABILIDADE HUMANA

NICHOLAS PINHO RIBEIRO 09 June 2015 (has links)
[pt] A maioria dos estudos existentes em controle de qualidade de processos focam no desempenho de máquinas e ferramentas. Assim, estes já contam com bons métodos para serem controlados. Contudo, erros humanos em potencial estão presentes em todos os processos industriais que contenham a relação homem-máquina, fazendo com que a necessidade de se avaliar a qualidade do desempenho humano seja de igual importância. A abordagem para se avaliar quão suscetível à falha humana estão tais processos baseiam-se em probabilidades de erro, supondo que o desempenho humano funciona da mesma maneira que o desempenho de máquinas, ou em PSFs (Performance Shaping Factors), variáveis representativas de características de desempenho humano. Embora esta última abordagem seja mais eficiente, ainda existem críticas a sua falta de contextualização: tais características são avaliadas separadamente uma das outras, e independentemente da tarefa que o operador esteja realizando. Sistemas de Inferência Fuzzy (SIFs) permitem que variáveis lingüísticas sejam avaliadas em conjunto, isto é, passa a ser possível criar um modelo que assimile as nuances da variação do comportamento de um PSF concomitantemente com a alteração de outro PSF. Dessa forma, a caracterização da confiabilidade humana, considerando que diversos PSFs afetam no desempenho dos demais, pode ser satisfeita ao se fazer uso de SIFs interligados seqüencialmente - SIFs hierárquicos. Para se contextualizar a caracterização da confiabilidade humana por tarefa realizada, necessita-se que os PSFs pertinentes a cada determinada tarefa sejam medidos novamente e realimentados ao sistema (desenvolvido nesta dissertação). O SIF geral (composto por nove camadas de SIFs hierárquicos) foi testado com dados hipotéticos e dados reais de operadores e tarefas de uma empresa do setor elétrico brasileiro. Os resultados encontrados foram satisfatórios e evidenciaram que a Lógica Fuzzy, na forma de SIFs hierárquicos, pode ser utilizada para caracterizar a confiabilidade humana, com a vantagem de fazê-lo enquanto seu contexto é considerado. / [en] Most of existing studies in quality control focus on machinery performance. There are effective and advanced control methods to deal with that. However, potential human errors are present in every industrial process operated by humans. Therefore, evaluating the quality of human performance becomes as important as evaluate machinery s. The approach to evaluate how much processes are susceptible to human error are based on error probabilities, by assuming that human performance is similar to machinery performance, or on PSFs (Performance Shaping Factors) – variables representing human features. Although this based approach is more efficient, there are still criticisms about its lack of context awareness: those features are evaluated separately from one another, and regardless of which task the employee is performing. Fuzzy Inference Systems (FISs) allow linguistic variables to be evaluated simultaneously, thus making it possible to develop a method that gathers the nuances of behavioral changes of a PSF whilst another PSF varies. With this method, and considering that different PSFs affect the performance of others, human reliability can be assessed through the use of sequentially interconnected FISs – Hierarchical Fuzzy Inference Systems. In order to contextualize this assessment by tasks, each of the PSFs that affects each task will have to be measured and fed into the system (as developed within this dissertation) once per task and per employee. The main FIS (which contains nine layers of hierarchical FISs) was tested by using both hypothetical and real data from operators and tasks of a Brazilian electricity company. Results were satisfactory and attested that Fuzzy Logic, in the form of hierarchical FISs, can be used to assess human reliability, with the advantage of also taking the context into account.
17

[en] COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR VISUAL SELF-LOCALIZATION AND MAPPING OF MOBILE ROBOTS / [pt] LOCALIZAÇÃO E MAPEAMENTO DE ROBÔS MÓVEIS UTILIZANDO INTELIGÊNCIA E VISÃO COMPUTACIONAL

NILTON CESAR ANCHAYHUA ARESTEGUI 18 October 2017 (has links)
[pt] Esta dissertação introduz um estudo sobre os algoritmos de inteligência computacional para o controle autônomo dos robôs móveis, Nesta pesquisa, são desenvolvidos e implementados sistemas inteligentes de controle de um robô móvel construído no Laboratório de Robótica da PUC-Rio, baseado numa modificação do robô ER1. Os experimentos realizados consistem em duas etapas: a primeira etapa de simulação usando o software Player-Stage de simulação do robô em 2-D onde foram desenvolvidos os algoritmos de navegação usando as técnicas de inteligência computacional; e a segunda etapa a implementação dos algoritmos no robô real. As técnicas implementadas para a navegação do robô móvel estão baseadas em algoritmos de inteligência computacional como são redes neurais, lógica difusa e support vector machine (SVM) e para dar suporte visual ao robô móvel foi implementado uma técnica de visão computacional chamado Scale Invariant Future Transform (SIFT), estes algoritmos em conjunto fazem um sistema embebido para dotar de controle autônomo ao robô móvel. As simulações destes algoritmos conseguiram o objetivo, mas na implementação surgiram diferenças muito claras respeito à simulação pelo tempo que demora em processar o microprocessador. / [en] This theses introduces a study on the computational intelligence algorithms for autonomous control of mobile robots, In this research, intelligent systems are developed and implemented for a robot in the Robotics Laboratory of PUC-Rio, based on a modiÞcation of the robot ER1. The verification consist of two stages: the first stage includes simulation using Player-Stage software for simulation of the robot in 2-D with the developed of artiÞcial intelligence; an the second stage, including the implementation of the algorithms in the real robot. The techniques implemented for the navigation of the mobile robot are based on algorithms of computational intelligence as neural networks, fuzzy logic and support vector machine (SVM); and to give visual support to the mobile robot was implemented the visual algorithm called Scale Invariant Future Transform (SIFT), these algorithms in set makes an absorbed system to endow with independent control the mobile robot. The simulations of these algorithms had obtained the objective but in the implementation clear differences had appeared respect to the simulation, it just for the time that delays in processing the microprocessor.
18

[en] STRUCTURAL BEHAVIOUR OF PRESTRESSED STAYED STEEL COLUMNS / [pt] COMPORTAMENTO ESTRUTURAL DE COLUNAS DE AÇO ESTAIADAS E PROTENDIDAS

RICARDO RODRIGUES DE ARAUJO 25 October 2017 (has links)
[pt] Colunas de aço estaiadas e protendidas são conhecidas como excelente solução em escoramento de grandes estruturas, como colunas de coberturas de lonas tensionadas, etc. Este trabalho apresenta uma série de ensaios experimentais tridimensionais em escala real desenvolvidos para determinação do comportamento estrutural de colunas de aço estaiadas e protendidas. Foram estudadas as variações no nível de protensão e na rigidez dos estais, além de descrever como os ensaios experimentais das três colunas de aço estaiadas são realizados: compreendendo os materiais utilizados; um novo sistema de medição de força nos estais; os passos e dificuldades na montagem das três colunas e o sistema de protensão aplicado. Existem alguns parâmetros que influenciam diretamente na resistência dessas colunas estaiadas, como por exemplo, a altura da coluna, o diâmetro externo, entre outros. Devido ao comportamento complexo deste tipo de colunas e ao grande esforço computacional para simulação do comportamento estrutural, através de uma análise paramétrica, optou-se por utilizar um projeto de experimentos junto com redes neurais a fim de extrapolar e obter novos resultados para carga crítica do sistema estrutural sem a necessidade de análise por programas de elementos finitos. De forma a complementar a tese, realizou-se um estudo do comportamento do sistema estrutural sujeito a ações dinâmicas através do programa de elementos finitos ANSYS com o objetivo de determinar as frequências naturais associadas aos seus modos de vibração. Também foi estudada a aplicação de um carregamento súbito para determinação do fator de amplificação dinâmico da coluna de aço estaiada e protendida. / [en] Prestressed steel columns are known as an efficient structural solution for great variety of temporary or permanent supporting systems for large span spatial frames and tensile surface structures. This work presents of full-scale three-dimensional tests carriedout for the assessment of structural behaviour of prestressed stayed steel columns. It was studied the effect prestress force level, stiffness of column braces and stays. Test setup and a new force measuring system for the column stays is fully described. Prestressed stayed steel columns have their strength dependant of parameters like: length, hollow section diameter, brace length and stiffness and axial stiffness of stays. Due to the complex behaviour of such columns that demands great computational effort for numerical simulations required for a parametric analysis it was used an experiment design tool coupled with neural network techniques employed to generate new data for the prestressed column buckling load. A study of the dynamic behaviour of prestressed columns using the finite element package ANSYS was carried-out in order to determine the column natural frequencies and their associated vibration modes. It was also studied the application of sudden loads to determine the dynamic amplification factor of this type of prestressed stayed steel column.

Page generated in 0.0417 seconds