1 |
[pt] AVALIAÇÃO DE DANOS ESTRUTURAIS BASEADA EM ONDAS GUIADAS ULTRASSÔNICAS E APRENDIZADO DE MÁQUINA / [en] GUIDED WAVES-BASED STRUCTURAL DAMAGE EVALUATION WITH MACHINE LEARNINGMATEUS GHEORGHE DE CASTRO RIBEIRO 25 February 2021 (has links)
[pt] Recentemente, ondas guiadas por ultrassom têm mostrado grande potencial
para ensaios não destrutivos e monitoramento de integridade estrutural
(SHM) em um cenário de avaliação de danos. As medições obtidas por
meio de ondas elásticas são particularmente úteis devido a sua capacidade de
se propagarem em diferentes materiais, como meios sólidos e fluidos e, também,
a capacidade de abrangerem áreas amplas. Ao possuir suficientes medições
oriundas de ondas guiadas, técnicas avançadas baseadas em dados, como
aprendizado de máquina, podem ser aplicadas ao problema, tornando o procedimento
de avaliação de danos ainda mais poderoso e robusto. Com base
nessas circunstâncias, o presente trabalho trata da aplicação de modelos de
aprendizado de máquina para fornecer inferências de avaliação de falhas baseadas
em informações de ondas guiadas por ultrassom. Dois principais estudos
de caso são abordados. Primeiramente, uma placa de polímero reforçado com
fibra de carbono (PRFC) é avaliada, utilizando dados da literatura de sinais de
onda guiada do tipo Lamb na detecção de defeitos pontuais. Os resultados demonstraram
que uma abordagem que utiliza um sinal de referência foi capaz
de obter excelentes acurácias ao usar a extração de características baseadas
em técnicas de identificação de sistemas. Em um segundo momento, defeitos
semelhantes à corrosão em uma placa de alumínio são classificados de acordo
com sua gravidade. A metodologia é auxiliada por um esquema de separação
de modos em sinais de ondas guiadas do tipo SH pré-adquiridos. Os resultados
obtidos mostraram que a adoção da separação de modos pode, de fato,
melhorar os resultados do aprendizado de máquina. / [en] Recently ultrasonic guided waves have shown great potential for nondestructive
testing and structural health monitoring (SHM) in a damage evaluation
scenario. Measurements utilizing elastic waves are particularly useful due
to their capability to propagate in different materials such as solid and fluid
bounded media, and, also, the ability to cover broad areas. When enough guided
waves measurements are available and advanced data-driven techniques
such as machine learning can be applied to the problem, the damage evaluation
procedure becomes then even more powerful and robust. Based on these
circumstances, the present work deals with the application of machine learning
models to provide fault evaluation inferences based on ultrasonic guided waves
information. Two main case studies are tackled in the mentioned subject.
Firstly, a carbon fiber reinforced polymer (CFRP) plate is assessed using open
data of Lamb guided wave signals in the detection of dot type defects. Results
demonstrated that a baseline dependent approach can obtain excellent results
when using system identification feature extraction. Secondly, corrosion-like
defects in an aluminium plate are classified according to their severity. The
methodology is assisted by a mode separation scheme of SH guided waves
signals of pre-acquired data. Results have shown that the adoption of mode
separation can in fact improve the machine learning results.
|
2 |
[en] DETECTION AND CHARACTERIZATION OF STRUCTURAL DAMAGE USING FIBER BRAGG GRATING SENSORS AND ARTIFICIAL NEURAL NETWORKS / [pt] DETECÇÃO E CARACTERIZAÇÃO DE DANOS ESTRUTURAIS ATRAVÉS DE SENSORES A REDE DE BRAGG E REDES NEURAIS ARTIFICIAISDANIEL RAMOS LOUZADA 26 February 2019 (has links)
[pt] O aumento dos custos relacionados aos processos de manutenção em estruturas como aeronaves, aliadas à crescente demanda das mesmas, alimentam a necessidade de investimentos em técnicas inovadoras de monitoramento estrutural. Dessa forma, o trabalho realizado nesta tese, busca o desenvolvimento de uma técnica de monitoramento ativo, visando o acompanhamento de parâmetros da estrutura analisada, a fim de identificar e caracterizar processos de dano não visíveis, tais como corrosão e delaminação. A metodologia empregada, teve como base a análise dos padrões de deformação superficial, obtidos com o uso de grades de sensores à fibra óptica baseadas em redes de Bragg (FBG). Inicialmente, tais padrões foram provocados por carregamentos estáticos (tração), e posteriormente por atuadores PTZ fixados à estrutura. Estes últimos são submetidos a uma voltagem alternada e frequência fixa. Esta técnica apresenta todas as vantagens dos sensores FBG (massa e dimensões reduzidas, imunidade eletromagnética, elevado poder de multiplexação e alta sensibilidade entre outras), alem de permitir a visualização de alterações nos padrões de deformação, provocados por danos, através da variação da
frequência de excitação. Com relação à interpretação dos resultados, a estratégia empregada consistiu em separar o problema de detecção e caracterização dos danos. Dessa forma, a detecção é realizada comparando a energia das deformações superficiais dos corpos de prova nos casos com e sem defeito, enquanto a caracterização é obtida através a utilização de redes neurais artificiais (RNA), por meio de rotinas de reconhecimento de padrões. / [en] The higher costs related to maintenance processes in structures such as aircraft, coupled with the growing demand of them, fueling the need for investment in innovative techniques for structural monitoring. Thus, the work done in this thesis seeks to develop a technique of active monitoring, aiming at monitoring of structure parameters analyzed in order to identify and characterize processes of hidden damage such as corrosion and delamination. The maid methodology was based on the analysis of patterns of surface deformation, obtained with the use of nets of optical fiber sensors based on fiber Bragg gratings ( FBG ). Initially, these patterns were caused by static loads (tension ), and later by PTZ actuators fixed to the frame, who are subjected to an AC voltage and fixed frequency. This technique has all the advantages of the FBG s sensors (mass and small dimensions, electromagnetic immunity, high multiplexing s power and high sensitivity among others), in addition to allowing visualization of changes in the patterns of deformation caused by damage, by varying the frequency excitation. With respect to the interpretation of the results, the strategy employed was to separate the problem of detection and characterization of damage. Thus, the detection is performed by comparing the deformation energy of the surface of the specimens in the cases with and without defect, whereas the characterization is obtained through the use of artificial neural networks (ANN) by means of pattern recognition routines.
|
Page generated in 0.0519 seconds