• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] ARTIFICIAL INTELLIGENCE METHODS APPLIED TO MECHANICAL ENGINEERING PROBLEMS / [pt] MÉTODOS DE INTELIGÊNCIA ARTIFICIAL APLICADOS A PROBLEMAS DE ENGENHARIA MECÂNICA

PEDRO HENRIQUE LEITE DA SILVA PIRES DOMINGUES 05 June 2020 (has links)
[pt] Problemas reais de engenharia mecânica podem compreender tarefas de i) otimização multi-objetivo (MO) ou ii) regressão, classificação e predição. Os métodos baseados em inteligência artificial (AI) são bastante difundidos na resolução desses problemas por i) demandarem menor custo computacional e informações do domínio do problema para a resolução de uma MO, quando comparados com métodos de programação matemática, por exemplo; e ii) apresentarem melhores resultados com estrutura mais simples, adaptabilidade e interpretabilidade, em contraste com outros métodos. Sendo assim, o presente trabalho busca i) otimizar um controle proporcional-integral-derivativo (PID) aplicado a um sistema de frenagem anti-travamento de rodas (ABS) e o projeto de trocadores de calor de placas aletadas (PFHE) e casco-tubo (STHE) através de métodos de otimização baseados AI, buscando o desenvolvimento de novas versões dos métodos aplicados, e.g. multi-objective salp swarm algorithm (MSSA) e multi-objective heuristic Kalman algorithm (MOHKA), que melhorem a performance da otimização; ii) desenvolver um sistema de detecção de vazamento em dutos (LDS) sensível ao roubo de combustível a partir do treinamento de árvores de decisão (DTs) com features baseadas no tempo e na análise de componentes principais (PCA), ambas exraídas de dados de transiente de pressão de operação normal do duto e de roubo de combustível; iii) constituir um guia de aplicação para problemas de MO de controle e projeto, processo de extração de features e treinamento de classificadores baseados em aprendizado de máquina (MLCs), através de aprendizado supervisionado; e, por fim iv) demonstrar o potencial das técnicas baseadas em AI. / [en] Real-world mechanical engineering problems may comprise tasks of i) multi-objective optimization (MO) or ii) regression, classification and prediction. The use of artificial intelligence (AI) based methods for solving these problems are widespread for i) demanding less computational cost and problem domain information to solve the MO, when compared with mathematical programming for an example; and ii) presenting better results with simpler structure, adaptability and interpretability, in contrast to other methods. Therefore, the present work seeks to i) optimize a proportional-integral-derivative control (PID) applied to an anti-lock braking system (ABS) and the heat exchanger design of plate-fin (PFHE) and shell-tube (STHE) types through AI based optimization methods, seeking to develop new versions of the applied methods, e.g. multi-objective salp swarm algorithm (MSSA) and multi-objective heuristic Kalman algorithm (MOHKA), which enhance the optimization performance; ii) develop a pipeline leak detection system (LDS) sensitive to fuel theft by training decision trees (DTs) with features based on time and principal component analysis (PCA), both extracted from pressure transient data of regular pipeline operation and fuel theft; iii) constitute an application guide for control and design MO problems, feature extraction process and machine learning classifiers (MLCs) training through supervised learning; and, finally, iv) demonstrate the potential of AI-based techniques.
2

[en] MULTI-OBJECTIVE OPTIMIZATION OF STEEL FRAMES CONSIDERING THE BRACING SYSTEM AS A DESIGN VARIABLE / [pt] OTIMIZAÇÃO MULTIOBJETIVO DE PÓRTICOS DE AÇO CONSIDERANDO A CONFIGURAÇÃO DO SISTEMA DE CONTRAVENTAMENTO COMO VARIÁVEL DE PROJETO

CLAUDIO HORTA BARBOSA DE RESENDE 04 November 2024 (has links)
[pt] Os pórticos espaciais de aço são amplamente utilizados na engenharia civil, desempenhando um papel essencial em diversas construções, como centros comerciais, residências e estádios. Apesar de suas vantagens em resistência e leveza, o aumento da altura dessas estruturas apresenta desafios significativos, tais como deslocamentos devido ao vento e comprometimento do comportamento dinâmico. Para lidar com tais questões, sistemas de contraventamento são empregados, sendo essenciais para garantir também a estabilidade estrutural. A presente tese propõe uma abordagem abrangente para otimizar pórticos espaciais de aço, com o objetivo de equilibrar custo e desempenho. Além da minimização de custos, os objetivos incluem maximizar a frequência natural de vibração, o fator de carga crítica relacionado à flambagem global, bem como reduzir o máximo deslocamento no topo, o número de perfis distintos e o peso total da estrutura. A metodologia adotada envolve a aplicação de quatro algoritmos evolutivos baseados em evolução diferencial e uma análise multicritério de tomada de decisões para a extração das soluções das frentes de Pareto, considerando diferentes cenários de estudo. Destaca-se como aspecto inovador a consideração conjunta de variáveis de projeto, como o sistema de contraventamento, o conjunto de orientações dos eixos principais de inércia dos pilares e perfis comerciais, permitindo a avaliação simultânea de até quatro funções objetivo, além da inclusão de restrições adicionais. Os experimentos numéricos realizados demonstram a eficácia das metodologias propostas, fornecendo soluções viáveis para diferentes cenários com objetivos diversos. Também é explorada a automatização do agrupamento de pilares nos experimentos numéricos, através da formulação multiobjetivo, bem como a consideração de efeitos de segunda ordem na análise estrutural. Os resultados obtidos oferecem informações valiosas aos projetistas, permitindo a extração de soluções da frente de Pareto que balanceiam os objetivos conflitantes, resultando em estruturas mais eficientes, econômicas e sustentáveis. / [en] Steel space frames are widely used in various civil engineering projects such as shopping centers, residences, and stadiums. Despite their strength and lightness, increasing their height poses challenges like wind-induced displacements and compromised dynamic behavior. To address these issues, bracing systems are employed to also ensure the structural stability. This thesis presents a comprehensive approach to optimizing steel space frames, aiming to balance cost and performance. Alongside cost reduction, objectives include maximizing natural frequency of vibration, the critical load factor for global buckling, and minimizing maximum displacement at the top, the number of distinct profiles, and total weight of the structure. The methodology involves using four evolutionary algorithms based on differential evolution and a multi-criteria decision-making analysis to extract solutions from the Pareto front for different study scenarios. An innovative aspect is the integrated assessment of design variables, including the bracing system configuration, orientations of the principal inertia axes of the columns, and commercial profiles. This allows simultaneous evaluation of up to four objective functions, along with additional design constraints. Numerical experiments demonstrate the effectiveness of the proposed methodologies, offering feasible solutions for various scenarios with different objectives. The automation of column grouping and consideration of second-order effects in structural analysis are also explored. The results provide valuable insights to designers, enabling them to extract solutions from the Pareto front that balance conflicting objectives, resulting in more efficient, economical, and sustainable structures.
3

[en] A HYBRID NEURO- EVOLUTIONARY APPROACH FOR DYNAMIC WEIGHTED AGGREGATION OF TIME SERIES FORECASTERS / [pt] ABORDAGEM HÍBRIDA NEURO-EVOLUCIONÁRIA PARA PONDERAÇÃO DINÂMICA DE PREVISORES

CESAR DAVID REVELO APRAEZ 18 February 2019 (has links)
[pt] Estudos empíricos na área de séries temporais indicam que combinar modelos preditivos, originados a partir de diferentes técnicas de modelagem, levam a previsões consensuais superiores, em termos de acurácia, às previsões individuais dos modelos envolvidos na combinação. No presente trabalho é apresentada uma metodologia de combinação convexa de modelos estatísticos de previsão, cujo sucesso depende da forma como os pesos de combinação de cada modelo são estimados. Uma Rede Neural Artificial Perceptron Multi-camada (Multilayer Perceptron - MLP) é utilizada para gerar dinamicamente vetores de pesos ao longo do horizonte de previsão, sendo estes dependentes da contribuição individual de cada previsor observada nos dados históricos da série. O ajuste dos parâmetros da rede MLP é efetuado através de um algoritmo de treinamento híbrido, que integra técnicas de busca global, baseadas em computação evolucionária, junto com o algoritmo de busca local backpropagation, de modo a otimizar de forma simultânea tanto os pesos quanto a arquitetura da rede, visando, assim, a gerar de forma automática um modelo de ponderação dinâmica de previsores de alto desempenho. O modelo proposto, batizado de Neural Expert Weighting - Genetic Algorithm (NEW-GA), foi avaliado em diversos experimentos comparativos com outros modelos de ponderação de previsores, assim como também com os modelos individuais envolvidos na combinação, contemplando 15 séries temporais divididas em dois estudos de casos: séries de derivados de petróleo e séries da versão reduzida da competição NN3, uma competição entre metodologias de previsão, com maior ênfase nos modelos baseados em Redes Neurais. Os resultados demonstraram o potencial do NEWGA em fornecer modelos acurados de previsão de séries temporais. / [en] Empirical studies on time series indicate that the combination of forecasting models, generated from different modeling techniques, leads to higher consen+sus forecasts, in terms of accuracy, than the forecasts of individual models involved in the combination scheme. In this work, we present a methodology for convex combination of statistical forecasting models, whose success depends on how the combination weights of each model are estimated. An Artificial Neural Network Multilayer Perceptron (MLP) is used to generate dynamically weighting vectors over the forecast horizon, being dependent on the individual contribution of each forecaster observed over historical data series. The MLP network parameters are adjusted via a hybrid training algorithm that integrates global search techniques, based on evolutionary computation, along with the local search algorithm backpropagation, in order to optimize simultaneously both weights and network architecture. This approach aims to automatically generate a dynamic weighted forecast aggregation model with high performance. The proposed model, called Neural Expert Weighting - Genetic Algorithm (NEW-GA), was com- pared with other forecaster combination models, as well as with the individual models involved in the combination scheme, comprising 15 time series divided into two case studies: Petroleum Products and the reduced set of NN3 forecasting competition, a competition between forecasting methodologies, with greater emphasis on models based on neural networks. The results obtained demonstrated the potential of NEW-GA in providing accurate models for time series forecasting.
4

[en] MULTIOBJECTIVE OPTIMIZATION METHODS FOR REFINERY CRUDE SCHEDULING APPLYING GENETIC PROGRAMMING / [pt] MÉTODOS DE OTIMIZAÇÃO MULTIOBJETIVO PARA PROGRAMAÇÃO DE PETRÓLEO EM REFINARIA UTILIZANDO PROGRAMAÇÃO GENÉTICA

CRISTIANE SALGADO PEREIRA 11 April 2022 (has links)
[pt] A programação de produção em refinaria pode ser compreendida como decisões que buscam otimizar alocação de recursos, o sequenciamento de atividades e a sua realização temporal, respeitando restrições e visando ao atendimento de múltiplos objetivos. Apesar da complexidade e natureza combinatória, a atividade carece de sistemas sofisticados que auxiliem o processo decisório, especialmente baseadas em otimização, pois as ferramentas utilizadas são planilhas ou softwares de simulação. A diversidade de objetivos do problema não implica em equivalência de importância. Pode-se considerar que existem grupos, onde os que afetam diretamente a capacidade produtiva da refinaria se sobrepõem aos associados à maior continuidade operacional. Esta tese propõe o desenvolvimento de algoritmos multiobjetivos para programação de petróleo em refinaria. As propostas se baseiam em conceituadas técnicas da literatura multiobjetivo, como dominância de Pareto e decomposição do problema, integradas à programação genética com inspiração quântica. São estudados modelos em um ou dois níveis de decisão. A diferenciação dos grupos de objetivos é avaliada com base em critérios estabelecidos para considerar uma solução proposta como aceitável e também é avaliada a influência de uma população externa no processo evolutivo. Os modelos são testados em cenários de uma refinaria real e os resultados são comparados com um modelo que trata os objetivos de forma hierarquizada. As abordagens baseadas em dominância e em decomposição apresentam vantagem sobre o algoritmo hierarquizado, e a decomposição é superior. Numa comparação com o modelo em dois níveis de decisão, apenas o que utiliza estratégia de decomposição em cada nível apresenta bons resultados. Ao final deste trabalho é obtido mais de um modelo multiobjetivo capaz de oferecer um conjunto de soluções que atendam aos objetivos críticos e deem flexibilidade de análise a posteriori para o programador de produção, o que, por exemplo, permite que ele pondere questões não mapeadas no modelo. / [en] Refinery scheduling can be understood as a set of decisions which aims to optimize resource allocation, task sequencing, and their time-related execution, respecting constraints and targeting multiple objectives. Despite its complexity and combinatorial nature, the refinery scheduling lacks more sophisticated support decision tools. The main systems in the area are worksheets and, sometimes, simulation software. The multiple objectives do not mean they have the same importance. Actually, they can be grouped whereas the objectives related to the refinery production capacity are more important than the ones related to a smooth operation. This thesis proposes the development of multiobjective algorithms applied to crude oil refinery scheduling. The proposals are based on the major technics of multiobjective literature, like Pareto dominance and problem decomposition, integrated with a quantum-inspired genetic programming approach. One and two decision level models are studied. The difference between groups is handled with conditions that define what can be considered a good solution. The effect of using an archive population in the evolutionary process is also evaluated. The results of the proposed models are compared with another model that handles the objectives in a hierarchical logical. Both decomposition and dominance approaches have better results than the hierarchical model. The decomposition model is even better. The bilevel decomposition method is the only one, among two decision levels models, which have shown good performance. In the end, this work achieves more than one multiobjective model able to offer a set of solutions which comprises the critical objectives and can give flexibility to the production scheduler does his analysis. Therefore, he can consider aspects not included in the model, like the forecast of crude oil batches not scheduled yet.

Page generated in 0.027 seconds