• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] PHYSICAL -CHEMICAL EVALUATION OF HIGH DENSITY POLYETHYLENE PROCESSED BY THE 3D PRINTING METHOD OF FUSED DEPOSITION MODELING FDM / [pt] AVALIAÇÃO FÍSICO-QUÍMICA DO POLIETILENO DE ALTA DENSIDADE PROCESSADO PELO MÉTODO DE IMPRESSÃO 3D POR MODELAGEM POR FUSÃO E DEPOSIÇÃO FDM

DANNY MESIAS CHAVEZ NOVOA 17 April 2015 (has links)
[pt] O objetivo deste trabalho foi estudar a influencia das condições da impressão 3D nas propriedades finais do polietileno de alta densidade usando a modelagem por fusão e deposição, FDM. Foram impressos protótipos com formato de corpos de prova para teste de tração tipo V segundo norma ASTM D638, a três temperaturas de processamento: 220, 240 e 260 Graus Celsius. Para a impressão das amostras foram mantidos constantes os parâmetros de controle, entre eles a espessura da camada de impressão. As amostras impressas foram caracterizadas por difração de raios X, espectroscopia infravermelha, calorimetria diferencial de varredura, análise termogravimétrica, ensaio de tração, índice de fluidez e teste de contração. Os resultados das caracterizações das amostras impressas foram comparados com os resultados do material sem processar, cujas propriedades foram obtidas usando os mesmo métodos de caracterização. Estes resultados demostraram que as condições de impressão por FDM empregadas neste trabalho causaram apenas uma leve mudança nas características estruturais das amostras processadas do PEAD em relação ao material original sem processamento. Houve um leve aumento da cristalinidade no PEAD impresso (em torno de 1,3 a 3 porcento). Além disso, foi comprovado que por causa do resfriamento desigual na superfície e no interior da amostra impressa, o grau de cristalinidade foi levemente maior no interior que na superfície do corpo de prova impresso. A leve mudança no grau de cristalinidade não foi suficiente para causar mudança no módulo de elasticidade e no limite de escoamento em relação ao PEAD original. Outros resultados demostraram que não houve mudança significativa envolvendo formação de ligações duplas, quebra de cadeias e degradação térmica por efeito da condição do processamento utilizada durante a impressão. / [en] The aim of this work was to study the influence of process conditions for 3D printing on the final properties of prototypes of high density polyethylene (HDPE) using the method of the fused deposition modeling. Prototypes for type-V tensile testing according to ASTM D 638 were printed; They were made to three processing temperatures: 220, 240 and 260 Celsius degree. Control parameters for printing were kept constant in all the samples. The printed samples were characterized by X – ray diffraction, infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, tensile test, melt flow index test, and, shrinkage test. The results of the characterization of the printed samples and of the original material were compared. These results demonstrated that the printing conditions employed in this study caused a slight change in the structural characteristics of the printed samples compared to the unprocessed original material, there being a slight increase in crystallinity (about 1,3 to 3 percent) for HDPE which was printed. In addition, it has been proven that the degree of crystallinity was slightly greater on the inside that on the surface of the printed samples, because of uneven cooling on the surface and inside of these samples. The slight change in the degree of crystallinity was not enough to cause change in the elastic modulus and yield strength compared to the original HDPE. Other results showed that there was not significant change involving bond formation, break chains, and, thermal degradation by the effect of the processing conditions used during printing.
2

[en] STUDY OF THE EXFOLIATION OF LEPIDOCROCITE-LIKE FERRITIATANATE NANOSHEETS WITH A DIMETHYLDIOCTADECYLAMMONIUM SALT AND THEIR APPLICATION IN THE POLYMER-BASED NANOCOMPOSITES / [pt] ESTUDO DA ESFOLIAÇÃO DE NANOFOLHAS DE FERRITITANATOS DE ESTRUTURA LEPIDOCROCÍTICA COM DIMETILDIOCTADECILAMÔNIO E SUA APLICAÇÃO EM NANOCOMPÓSITOS DE MATRIZ POLIMÉRICA

JULIANA BENTO VIOL 09 May 2016 (has links)
[pt] Nanofolhas de ferrititanato com estrutura tipo lepidocrocita foram sintetizadas a partir de um precursor de baixo custo (areia ilmenítica), via rota hidrotérmica alcalina. Dois tipos de nanofolhas com alto e baixo teor de sódio foram obtidos: a) nanofolhas sódicas (NaLTs) e b) nanofolhas protonizadas (pLTs), obtidas mediante uma reação rápida de troca-ácida à temperatura ambiente. As capacidades de troca catiônica de ambos os tipos de nanofolhas foram determinadas seguindo-se a norma C 837 da ASTM. Após a síntese desses dois nanomateriais com diferentes teores de sódio foi estudado o processo de esfoliação em camadas de espessura sub-nanométrica, sob agitação intensa à temperatura de 60 C, utilizando-se como o agente de esfoliação pela primeira vez numa estrutura lepidocrocítica o sal cloreto de dimetildioctadecilamônio (2C18), visando a posterior aplicação das nanofolhas esfoliadas como reforço em nanocompósitos de matriz polimérica. O intuito de aplicar estes reforços em uma matriz polimérica foi buscar uma dispersão mais homogênea das folhas esfoliadas, além do aumento da compatibilidade das nanocargas com a matriz polimérica pela presença dos grupos orgânicos do sal quimicamente ligados às nanofolhas e, consequentemente, o incremento das propriedades térmicas e mecânicas do material polimérico. Dependendo do teor de sódio, foram obtidas nanofolhas esfoliadas e/ou intercaladas que foram posteriormente caracterizadas por fotometria de chama, espetroscopia de infravermelho, área superficial específica por adsorção de N2, termogravimetria, difração de raios-X de alto ângulo, espalhamento de raios-X a baixo ângulo, microscopia de força atômica e microscopia eletrônica de transmissão. Para a fabricação dos nanocompósitos foram utilizadas duas matrizes: a) uma de PEAD puro e b) a outra de PEAD com adição de uma porcentagem baixa, e constante, de polietileno funcionalizado com anidrido maleico (PE-g-MA), sendo reforçadas com as nanocargas protonizadas virgens (pLTs) e esfoliadas (pLTs-o-2C18) nas concentrações de 1,0; 2,0 e 4,0 por cento p. Finalmente, foram avaliadas as propriedades mecânicas e térmicas dos nanocompósitos por meio de ensaios de tração, termogravimetria, calorimetria diferencial de varredura e dilatometria. Os nanocompósitos preparados com pLTs virgem e os fabricados com a adição de agente de acoplamento de PE-g-MA apresentaram um aumento no módulo de Young de aproximadamente 12,8 por cento e 5,1 por cento para cargas de 4 por cento e 2 por cento em peso de pLTs virgem, respectivamente. Os nanocompósitos, que apresentam o maior aumento no limite de escoamento foram os reforçados com 4 por cento p de nanofolhas esfoliada (pLTs-o-2C18). No entanto, estes materiais apresentam uma diminuição no módulo de Young de aproximadamente 12 por cento. Os nanocompósitos com o maior aumento no módulo de Young foram os preparados com 4 por cento p pLTs ( aproximadamente 12,8 por cento), enquanto sua tensão no escoamento também foi melhorada (um aumento de aproximadamente 4 por cento). A incorporação de nanofolhas não afetou significativamente as propriedades de estabilidade térmica da matriz e uma diminuição no coeficiente de expansão térmica de 4 a 5,5 por cento foi apenas observada para nanocompósitos preparados com pLTs virgens. O grau de cristalinidade diminuiu para todos os nanocompósitos fabricados, no qual variou de 2,17 até 26 por cento. / [en] Ferrititanate nanosheets with lepidocrocite-like structure were synthesized from a low cost precursor (ilmenite sand) through alkaline hydrothermal route. Two types of nanosheets with high and low-sodium content were obtained: a) sodium rich nanosheets (NaLTs) and b) protonated nanosheets (pLTs), obtained by a rapid acid-exchange reaction at room temperature. The cation exchange capacities of both types of nanosheets were determinated according ASTM C 837. After the synthesis of these two nanomaterials with different sodium levels, it was studied the exfoliation process to obtain monolayers of nanometric lateral dimensions under intensive stirring at 60 C, using dimethyldioctadecylammonium cloride (2C18) as the exfoliating agent of the lepidocrocite-like ferrititanate nanosheets for the first time, aiming the further application of the exfoliated nanosheets as reinforcement in polymer matrix nanocomposites. The purpose of the addition of these nanofillers within a polymer matrix is to obtain a more homogeneous dispersion of exfoliated nanosheets, as well as the improvement of the compatibility between nanofillers and the polymer matrix, due to the presence of the organic groups from 2C18, chemically attached to nanosheets and hence, to promote the an increase on mechanical and thermal properties of the polymeric matrix. Depending on the sodium content, it was obtained exfoliated and/or intercalated nanosheets that were further characterized by flame photometry, infrared spectroscopy, specific surface area by N2 adsorption, thermogravimetry, X-ray powder diffraction (XRPD) and of small angle X-ray scattering (SAXS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). For the manufacturing of nanocomposites two types of matrices were used: a) neat high density polyethylene (HDPE) and b) HDPE with the addition of a low percentage of polyethylene-graft-maleic anhydride (PE-g-MA). Pristine nanosheets (pLTs) and exfoliated nanosheets (pLTs-O-2C18) were used as nanofillers at loadings of 1.0; 2.0 and 4.0 wt percent. Finally, we assessed the mechanical and thermal properties of the as-prepared nanocomposites through tensile tests, thermogravimetry analysis (TGA), differential scanning calorimetry (DSC) and dilatometry. Nanocomposites prepared with pristine pLTs and those manufactured with the addition of PE-g-MA coupling agent showed an increase on the Young modulus of about 12,8 percent and 5,1 percent for loadings of 4wt percent and 2 wt percent of pristine pLTs, respectively. The nanocomposites that present the highest increase on yield stress were reinforced with 4 wt percent of exfoliated nanosheets (pLTs-o-2C18). However, these materials presents a decrease in the Young modulus of about 12 percent. The nanocomposites with the highest increase on Young Modulus were those prepared with 4 wt percent of pristine ( about 12,8 percent), and the yield stress was also improved (increase of about 4 percent). The incorporation of nanosheets did not affect significantly the thermal stability properties of the matrix and a decrease on the coefficient of thermal expansion was solely observed for nanocomposites prepared with pristine pLTs. The degree of crystallinity decreased for all the manufactured nanocomposites, in the range of about 2,17 t-26 percent for nanocomposites prepared with pristine pLTs and those fabricated with the addition of PE-g-MA, respectively. up to about pLTs with the addition of PE-g-MA.
3

[en] HIGH-DENSITY POLYETHYLENE COMPOSITES REINFORCED WITH IN2W3O12 NANOPARTICLES / [pt] COMPÓSITOS DE POLIETILENO DE ALTA DENSIDADE REFORÇADOS POR NANOPARTÍCULAS DE IN2W3O12

GUSTAVO SCHINAZI 20 April 2017 (has links)
[pt] O Polietileno de Alta Densidade (PEAD) é um dos materiais mais conhecidos e é utilizado em diversos campos de aplicação. Apesar de suas inúmeras qualidades, como baixa densidade, alta ductilidade e alta resistência específica, esse material possui algumas desvantagens que limitam a sua aplicabilidade, tais como baixa rigidez, baixa estabilidade térmica e alta expansividade térmica. Por outro lado, existe uma classe seleta de materiais que possuem coeficiente de expansão térmica (CET) negativo ou próximo de zero. Pertencem a esse grupo, por exemplo, as cerâmicas da família A2M3O12, como o In2W3O12 (tungstato de índio). Tendo isso em vista, a proposta deste trabalho foi estudar diferentes métodos de mistura física entre esses dois materiais para fabricar e caracterizar compósitos de PEAD reforçados por nanopartículas de In2W3O12 com CET reduzido e propriedades mecânicas aumentadas em relação ao polímero. Primeiramente, sintetizaram-se nanopartículas de In2W3O12 pelo método de coprecipitação. Suas temperaturas de cristalização (aproximadamente 530 graus Celsius) e de transformação de fase monoclínica/ortorrômbica (259 graus Celsius) foram determinadas por análise térmica simultânea, e seus parâmetros de rede à temperatura ambiente foram determinados por DRX. Além disso, calcularam-se os CET s intrínsecos do In2W3O12 para ambas as suas fases por DRX in situ com temperatura variável. Foi encontrado, pela primeira vez, um CET intrínseco negativo para sua fase ortorrômbica, de alpha1 igual a menos 1,5 multiplicado por 10 elevado a menos 6 e K elevado a menos 1. Em seguida, fabricaram-se compósitos a partir de pellets de PEAD e das nanopartículas de In2W3O12 por microextrusão e microinjeção precedidas por uma etapa de pré-mistura. Dois parâmetros do processo de fabricação foram variados: a fração de carga no compósito (0,5; 2; 4 e 10 por cento) e o método de pré-mistura (sem pré-mistura; por vibração dentro de um moinho sem as bolas de moagem; e em uma autoclave giratória a 190 graus Celsius e pressão ambiente). Finalmente, os compósitos foram caracterizados por ensaios de tração, dilatometria e análise termogravimétrica. Todos os compósitos apresentaram incremento no módulo de elasticidade e no limite de escoamento, obtendo-se aumentos de até 45 por cento e 17 por cento, respectivamente, em relação ao PEAD puro. Os materiais preparados no moinho com 10 por cento p de reforço apresentaram os melhores resultados. De forma geral, os compósitos submetidos a algum tipo de pré-mistura tiveram melhores propriedades mecânicas do que os que não foram pré-misturados. Por outro lado, os compósitos não apresentaram uma grande redução no CET em relação ao PEAD. O melhor resultado encontrado foi uma redução de 6 por cento para os materiais sem pré-mistura com 4 por cento p de reforço. A temperatura de degradação dos compósitos sem pré-mistura também não apresentou melhora significativa. O maior incremento foi de 1,5 por cento em relação ao PEAD puro, encontrado para os materiais com 0,5 por cento p de carga. Finalmente, amostras de PEAD puro submetidas aos diferentes métodos de pré-mistura foram analisados por DSC. Constatou-se que a temperatura de fusão não é alterada, mas a entalpia de fusão e o grau de cristalinidade aumentam com a pré-mistura por vibração (8 por cento) e ainda mais com a pré-mistura na autoclave (15 por cento) em relação ao PEAD puro como recebido. / [en] High-density polyethylene (HDPE) is one of the most widely used materials. Despite its numerous qualities, such as low density, high ductility, and high specific strength, HDPE presents certain disadvantages that limit its applicability, like low stiffness, low thermal stability, and high thermal expansion. In contrast, there is a select group of materials that display negative or near-zero coefficient of thermal expansion (CTE). Ceramics belonging to the A2M3O12 family, which includes In2W3O12 (indium tungstate), are examples of such materials. Therefore, this dissertation proposes to examine different methods of physical mixture in order to produce and characterize HDPE composites reinforced with In2W3O12 nanoparticles with reduced CTE and better mechanical properties than the neat polymer. Firstly, In2W3O12 nanoparticles were synthesized by coprecipitation. Simultaneous thermal analysis proved their crystallization temperature and monoclinic/orthorhombic phase transition temperature to be approximately 530 Celsius degrees and 259 Celsius degrees, respectively. The lattice parameters at room temperature were determined by XRD, and the intrinsic CTE s for both phases were calculated by variable-temperature in situ XRD. For the first time, a negative intrinsic CTE was found for the orthorhombic phase (Alpha 1 equal than minus 1.5 multiplied 10 power minus 6 and K power minus 1). Secondly, composites were produced from HDPE pellets and the In2W3O12 nanoparticles by microextrusion and microinjection preceded by a pre-mixing step. Two fabrication parameters were analyzed: the filler content (0.5, 2, 4, and 10wt percent were used) and the pre-mixing method (no pre-mixture, by vibration within a mill without balls, and in a rotating autoclave at 190 Celsius degrees and ambient pressure). Finally, the composites were characterized by tensile tests, dilatometry, and thermogravimetric analysis. All of the composites presented higher Young s modulus and yield stress than neat HDPE, with increases of up to 45 percent and 17 percent, respectively. The best results were displayed by the materials that were pre-mixed in the mill with 10wt percent filler fraction. In general, both pre-mixing methods improved the composites mechanical properties. On the other hand, the polymer s CTE was not significantly reduced, being decreased by 6 percent in the best case. The degradation temperature showed almost no improvement, with a 1.5 percent increase for the composites with 0.5 percent filler content. Lastly, neat HDPE samples exposed to the different pre-mixing methods were analyzed by differential scanning calorimetry and compared with the as-received pellets. Results showed that the melting temperature was not affected by the mixing techniques, but both the enthalpy of fusion and the degree of crystallinity were increased by 8 percent and 15 percent for the samples pre-mixed by vibration in the mill and by rotation in the autoclave, respectively.
4

[en] POLYAMIDE 12 AND HIGH DENSITY POLYETHYLENE CHARACTERIZATION BEFORE AND AFTER AGING IN WATER AT DIFFERENT TEMPERATURES / [pt] CARACTERIZAÇÃO DA POLIAMIDA 12 E POLIETILENO DE ALTA DENSIDADE ANTES E DEPOIS DO ENVELHECIMENTO EM ÁGUA A DIFERENTES TEMPERATURAS

RODRIGO CAMPELLO TUCUNDUVA 07 February 2018 (has links)
[pt] Nos últimos anos surgiram algumas alternativas para as tubulações de aço carbono que são a grande maioria no transporte de petróleo e gás, com grande destaque para os materiais poliméricos, principalmente por apresentarem baixa densidade em relação aos metais, boa resistência à corrosão e boa processabilidade. Além disso, os polímeros apresentam maior facilidade de manutenção e instalação, tornando-os economicamente viáveis. No entanto, esses materiais podem sofrer degradação quando expostos a produtos químicos e ao calor. O objetivo desse trabalho e avaliar a variação das propriedades mecânicas das poliamidas 12 e dos polietilenos de alta densidade quando envelhecidos em água durante 6 meses a temperatura ambiente e a 70 graus Celsius, tendo em vista que a temperatura de serviço desses materiais varia entre 70 a 80 graus Celsius. Para a caracterização do material foram realizados, ensaio mecânicos de tração, impacto de excitação por impulso sonoro, como a caracterização por microscopia eletrônica. Os resultados das caracterizações das amostras após envelhecimento foram comparados com os resultados obtidos dos materiais originais, de forma a percebermos que todas as amostras sofreram variações em suas propriedades mecânicas. A temperatura ambiente as amostras de PEAD sofreram um aumento em sua rigidez, aumentando sua resiliência, reduzindo sua resistência ao impacto, reduzindo também a tensão de escoamento e reduzindo seu amortecimento. Já para as amostras de PEAD envelhecidas a 70 graus Celsius houve uma redução na sua rigidez e tensão de escoamento, no entanto houve um aumento em sua resistência ao impacto e na resiliência do material. Para as poliamidas 12 envelhecidas a temperatura ambiente houve uma significativa redução na sua rigidez, na sua tensão de escoamento e tensão máxima, houve um aumento na resiliência do material coerente com um aumento da resistência ao impacto e um aumento no amolecimento. A 70 graus Celsius a poliamida 12 mostrou uma redução na sua rigidez, tensão de escoamento e tensão máxima, houve um aumento na resiliência e na resistência ao impacto, seguido de uma redução no amolecimento. Em todas as situações de envelhecimento as PEAD sofreram uma degradação na cor do material, o que não ficou tão visível para as poliamidas 12 principalmente para o envelhecimento a temperatura ambiente. Sendo assim o comportamento mecânico dos polímeros foi influenciado pela temperatura, sempre acarretando variações em suas propriedades mecânicas e dependendo da situação podendo ser mais ou menos relevante. / [en] In recent years, some alternatives have emerged for carbon steel pipelines, which are the majority in the transport of oil and gas, with a great prominence for polymeric materials, mainly due to their low metal density, good corrosion resistance and good processability. In addition, the polymers present greater ease of maintenance and installation, making them economically viable. However, such materials may be degraded when exposed to chemicals and heat. The objective of this work is to evaluate the variation of the mechanical properties of polyamides 12 and high density polyethylenes when aged in water for 6 months at ambient temperature and at 70 degrees Celsius, considering that the service temperature of these materials ranges from 70 to 80 degrees Celsius. For the characterization of the material, mechanical tests of traction, impact and excitation by sonorous impulse were carried out, such as the characterization by electron microscopy. The results of the characterization of the samples after aging were compared with the results obtained from the original materials, in order to realize that all the samples suffered variations in their mechanical properties. At ambient temperature samples of HDPE increased their stiffness, increasing their resilience, reducing their impact resistance, also reducing the yield stress and reducing their damping. However, for HDPE samples aged 70 degrees Celsius, there was a reduction in their stiffness and yield stress, however, there was an increase in their impact strength and material resilience. For polyamides 12 aged at ambient temperature there was a significant reduction in stiffness, flow stress and maximum stress, there was an increase in the resilience of the material consistent with an increase in impact strength and an increase in softening. At 70 degrees Celsius polyamide 12 showed a reduction in stiffness, yield stress and maximum stress, there was an increase in resilience and impact strength, followed by a reduction in softening. In all aging situations the HDPE suffered a degradation in the color of the material, which was not so visible for the polyamides 12 mainly for aging at ambient temperature. Thus, the mechanical behavior of the polymers was influenced by temperature, always leading to variations in their mechanical properties and depending on the situation, being more or less relevant.

Page generated in 0.0561 seconds