• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] REGIDITY OF SURFACES WHOSE GEODESIC FLOWS PRESERVE FOLIATIONS OF CODIMENSION 1 / [pt] RIGIDEZ DE SUPERFÍCIES CUJOS FLUXOS GEODÉSICOS PRESERVAM FOLHEAÇÕES DE CO-DIMENSÃO 1

JOSE BARBOSA GOMES 10 March 2004 (has links)
[pt] Seja S uma superfície fechada orientável, de gênero > 2 e sem pontos conjugados. Seja F uma folheação no fibrado tangente unitário de S, de codimensão 1, invariante pelo fluxo geodésico e de classe C2. Então, a curvatura de S é constante < 0. A demonstração é conseqüência dos dois seguintes resultados, que têm interesse por si mesmos. O primeiro é que se T1S admite uma folheação contínua de codimensão 1 por folhas C1 invariantes pelo fluxo geodésico então a superfície não tem pontos conjugados e a folheação coincide com a folheação centro-estável ou com a centro-instável. O segundo resultado é o seguinte. Seja S uma superfície fechada orientável, de gênero > 2 e sem pontos conjugados. Então, a folheação centro-estável Fcs de T1S é conjugada à folheação centro-estável da métrica hiperbólica em S. Esta conjugação é da mesma classe de diferenciabilidade de Fcs . Portanto, se Fcs é de classe C2, uma extensão da teoria de Godbillon-Vey implica que a curvatura da superfície é constante negativa. / [en] Lets be a orientable closed surface with no conjugate points. Let F be a foliation in the unitary tangent fiber bundle of S, of codimension 1, invariant by the geodesic flow and of class C2. Then, the curvature of S is constant < 0 . The demonstration is a consequence of the two following results, which are of interest by themselves. The first one is that if T1S admits a continuous foliation of codimension 1 by leaves C1 invariants by the geodesic flow, then the surface is with no conjugate points, and the foliation coincides with either the center stable foliation or the center unstable foliation. The second result is the following. Let S be a orientable closed surface of genus > 2 and with no conjugate points. Then, the center unstable foliation Fcs of T1S is conjugate to the center stable foliation of the hyperbolic metric in S. This conjugation is of the same class of differentiability of Fcs. Therefore, if Fcs is of class C2, an extension of the Godbillon-Vey theory implies that the curvature of the surface is constant negative.
2

[en] DESTRUCTION OF INVARIANT GRAPHS BY Cˆ{1,\BETA} PERTURBATIONS / [pt] DESTRUIÇÃO DE GRÁFICOS INVARIANTES POR PERTURBAÇÕES Cˆ{1,\BETA}

23 December 2021 (has links)
[pt] Segundo a teoria desenvolvida por Kolmogorov, Arnold e Moser na década de sessenta, a grande maioria dos toros invariantes persistem após uma perturbação C3 de um Hamiltoniano integrável. Uma pergunta natural é se perturbações em topologias Ck, para k < 3, ainda preservam tais toros. Bangert mostrou que a situação é a oposta na topologia C1 : arbitrariamente próximo de uma métrica Riemanniana plana no toro existem métricas sem nenhum toro invariante. Ruggiero estendeu esses resultados para Lagrangeanos mecânicos no toro e mostrou que, no caso de métricas Riemannianas, esse fenômeno é C1 genérico. Neste trabalho, mostramos que, dado ǫ > 0, E 2 R e um Hamiltoniano de Tonelli reversível H : TT2 -> R, existe β E (0, 1) e uma ǫ perturbação H0 de H tal que H0 não possui gráficos contínuos invariantes. Para tal, construimos explicitamente uma métrica Finsler, sem nenhum campo contínuo de minimizantes, através de um estudo analítico do operador de Jacobi. / [en] According to the theory developed by Kolmogorov, Arnold and Moser in the sixties, the majority of invariant tori persists under a C3 perturbation of a integrable Hamiltonian. A natural question is if a perturbation in the Ck topology, k < 3, still preserves such tori. Bangert showed that, in the C1 topology, what happens is the opposite: there are metrics with no invariant torus arbitrarily close to any given Riemannian metric. Ruggiero extended these results to mechanical Lagrangians in the torus and showed that for Riemannian metrics this phenomenon is C1 generic. In this work, we show that, given e > 0, e 2 R and a reversible Tonelli Hamiltonian H : TT2 -> R, there exists β E (0, 1) and an ǫ perturbation H0 of H in the C1,β topology such that H0 has no continuous invariant graphs. The result is achieved by explicitly exhibiting a Finsler metric, without any continuous field of minimizers, constructed after an analytic study of the Jacobi operator.

Page generated in 0.0241 seconds