1 |
[en] A PRIORI GRADIENT ESTIMATES, EXISTENCE AND NON-EXISTENCE FOR A MEAN CURVATURE EQUATION IN HYPERBOLIC SPACE / [pt] ESTIMATIVAS A PRIORI DO GRADIENTE, EXISTÊNCIA E NÃO-EXISTÊNCIA, PARA UMA EQUAÇÃO DA CURVATURA MÉDIA NO ESPAÇO HIPERBÓLICOELIAS MARION GUIO 07 August 2003 (has links)
[pt] Um resultado clássico no âmbito de equações diferenciais
parciais e de geometria diferencial é o seguinte: Dada uma
constante a existe uma condição da fronteira do domínio
(Omega) de maneira que o problema de Dirichlet para a
equação da curvatura média a no espaço Euclidiano é sempre
solúvel. Este é um teorema devido a Serrin (1969). Além
disso, se a condição de Serrin não for satisfeita, há um
resultado de não-existência. A partir disso foi perguntado
se um resultado similar valeria no espaço Hiperbólico. A
finalidade desta tese é dar uma resposta afirmativa a esta
pergunta, exibindo uma condição tipo Serrin. De maneira que
obtém-se existência de superfícies cujo gráfico tenha
curvatura média hiperbólica pré-determinada H(x) no espaço
hiperbólico. O resultado é sharp no sentido que se tal
condição for negada então não-existência pode ser
estabelecida. O ponto central é uma estimativa a priori do
gradiente de uma tal solução. / [en] A classical result in Partial Differential Equations and
Differential Geometrydue to Serrin (1969) is the following:
Given a constant (alfa) there exists a condition on the
boundary of the domain (omega)such that the Dirichlet
problem for the mean equation (alfa)is solvable. Besides,
if Serrin's condition fails there is a non-existence
result. Taking into account this classical result one may
ask if a similar theorem holds in hyperbolic space. The
goal of this thesis is to give a positive answer to this
question establishing a certain Serrin type condition. Thus
we obtain existence of surfaces whose graphs has prescribed
mean curvature H(x) in hyperbolic space. This result is
sharp because if the condition is not satisfied then a non-
existence result can be inferred. The main point of the
argument is some a priori gradient estimate and degree
theory.
|
2 |
[pt] REPRESENTAÇÃO ESTOCÁSTICA PARA SOLUÇÕES DO PROBLEMA DE DIRICHLET PARA EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍPTICAS / [en] STOCHASTIC REPRESENTATION FOR SOLUTIONS OF THE DIRICHLET PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONSCLAUSON CARVALHO DA SILVA 01 September 2016 (has links)
[pt] Como motivação, apresentaremos alguns problemas que ilustram a conexão
entre a teoria da probabilidade e algumas equações diferenciais parciais. Suas
soluções mesclam os dois assuntos e provocam a suspeita de que alguns processos
estocásticos e operadores diferenciais caminham juntos. Em seguida,
exibiremos a teoria das difusões de Itô. Mostraremos algumas de suas características, como a propriedade de Markov e cada um destes processos possuirá
o que chamaremos de gerador infinitesimal da difusão. Este será um operador
diferencial de segunda ordem cujo estudo detalhado revela características
do processo. Apresentaremos também a fórmula de Dynkin. Com essas ferramentas
probabilísticas, encontraremos uma representação estocástica para a
solução do problema de Dirichlet para operadores diferenciais elípticos, generalizando
as soluções dos problemas inicialmente propostos. / [en] Firstly, for motivation purposes, we briefly present a few problems mixing
notions of probability theory and of partial differential equations (PDE). In
discussing the solution to such problems it will become apparent that some
stochastic process and differential equations walk together. Next, we introduce
a class of stochastic processes called the Ito diffusions, and some of its features
such as the Markov property. Each such process has an associated linear
operator the, so called, infinitesimal generator. This operator acts as a second-order
differential operator on smooth functions, and controls the LOCAL
behavior of these diffusions. We discuss these features together with Dynkin s
formula a convenient relation derived from the infinitesimal generator, which
informs us about the AVERAGE behavior of the diffusion. Finally, we apply
these probabilistic tools to find a formula for the solution of the Dirichlet
problem for a somewhat general linear elliptic second order PDE. This formula
connects the solution of the PDE to the aggregated/average behavior and
associated (Ito) diffusion. This type of stochastic representation generalizes
the solution method of the problems firstly discussed.
|
3 |
[pt] A EQUAÇÃO DE LAPLACE E O MÉTODO DE PERRON / [en] THE LAPLACE EQUATION AND THE PERRON METHODPAULO RICARDO DE FRANCA SILVA 06 January 2025 (has links)
[pt] Esta dissertação versa sobre a equação de Laplace e dos resultados que
obtemos tentando resolve-la. Nosso principal objetivo é resolver o problema
clássico de Dirichlet utilizando o método de Perron. / [en] This dissertation addresses the Laplace s equation and the results that
arise when attempting to solve it. Our main objective is to solve the classical
Dirichlet problem using Perron s method.
|
Page generated in 0.0277 seconds