• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] CALCULUS OF AFFINE STRUCTURES AND APPLICATIONS FOR ISOSURFACES / [pt] CÁLCULO DE ESTRUTURAS AFINS E APLICAÇÃO ÀS ISOSSUPERFÍCIES

04 October 2011 (has links)
[pt] A geometria diferencial provê um conjunto de medidas invariantes sob a ação de um grupo de transformações, em particular rígidas, afins e projetivas. Os invariantes por transformações rígidas são usados em quase todas as aplicações de computação gráfica e modelagem geométrica. O caso afim, por ser mais geral, permite estender essas ferramentas. Neste trabalho, propriedades geométricas são apresentadas no caso de superfícies paramétricas ou implícitas, em particular, a métrica afim, os vetores co-normal e normal afins e as curvaturas Gaussiana e média afins. Alguns resultados usuais de geometria Euclidiana, como a fórmula de Minkowski, são estendidos para o caso afim. Esse estudo permite definir estimadores das estruturas afins no caso de isossuperfícies. Porém, um cálculo direto dessas estruturas resulta em um grande número de operações e instabilidade numérica. Uma redução geométrica é proposta, obtendo fórmulas mais simples e mais estáveis numericamente. As propriedades geométricas incorporadas no Marching Cubes são analisadas e discutidas. / [en] Differential Geometry provides a set of measures invariant under a set of transformations, in particular rigid, affine, and projective. The invariants by rigid motions are using almost all applications of computer graphics and geometric modeling. The affine case, since it is more general, allows to extend these tools. In this work, geometric properties are presented in the case of parametric or implicit surfaces, in particular the affine metric, the conormal and normal vectors, and the affine Gaussian and mean curvatures. Some usual results of Euclidean geometry, as the Minkowski formula, are extended for the affine case. This study allows to define estimators of affines structure in the case of isosurfaces. Although, the direct calculation of these structures greatly increases the number of operations and numerical instabilities. A geometrical reduction is proposed obtaining a much simpler and numerical stabler formulae. The geometrical properties are incorporated in the Marching Cubes algorithms, then they are analyzed and discussed.
2

[pt] SUPERFÍCIES DE CURVATURA MEDIA CONSTANTE EM VARIEDADES HOMOGÉNEAS DE DIMENSÃO 3 COM ENFÂSE EM GPSL2(R, Τ) / [en] SURFACES OF CONSTANT MEAN CURVATURE IN HOMOGENEOUS THREE MANIFOLDS WITH EMPHASIS IN GPSL2(R, Τ )

CARLOS DIOSDADO ESPINOZA PENAFIEL 01 September 2010 (has links)
[pt] Nesta teses, nós estudamos H-superfícies, isto é, superfícies tendo curvatura media constante, imersas em variedades homogêneas simplesmente conexas de dimensão 3. Nós focamos nossa atenção no estudo de existência de H multigráficos. Também estudamos a H-superfícies invariantes por um grupo a um parâmetro de isometrias que estão imersas no espaço PSL(2) (R, T). / [en] In this thesis we study H-surfaces, that is, surfaces having constant mean curvature, immersed in homogeneous simply connected 3-manifold. We focus our attention in the study of existence of H multigraphs. We also study the H-surfaces invariant by one-parameter group of isometries which are immersed in the space]PSL2(R, T).
3

[en] A PRIORI GRADIENT ESTIMATES, EXISTENCE AND NON-EXISTENCE FOR A MEAN CURVATURE EQUATION IN HYPERBOLIC SPACE / [pt] ESTIMATIVAS A PRIORI DO GRADIENTE, EXISTÊNCIA E NÃO-EXISTÊNCIA, PARA UMA EQUAÇÃO DA CURVATURA MÉDIA NO ESPAÇO HIPERBÓLICO

ELIAS MARION GUIO 07 August 2003 (has links)
[pt] Um resultado clássico no âmbito de equações diferenciais parciais e de geometria diferencial é o seguinte: Dada uma constante a existe uma condição da fronteira do domínio (Omega) de maneira que o problema de Dirichlet para a equação da curvatura média a no espaço Euclidiano é sempre solúvel. Este é um teorema devido a Serrin (1969). Além disso, se a condição de Serrin não for satisfeita, há um resultado de não-existência. A partir disso foi perguntado se um resultado similar valeria no espaço Hiperbólico. A finalidade desta tese é dar uma resposta afirmativa a esta pergunta, exibindo uma condição tipo Serrin. De maneira que obtém-se existência de superfícies cujo gráfico tenha curvatura média hiperbólica pré-determinada H(x) no espaço hiperbólico. O resultado é sharp no sentido que se tal condição for negada então não-existência pode ser estabelecida. O ponto central é uma estimativa a priori do gradiente de uma tal solução. / [en] A classical result in Partial Differential Equations and Differential Geometrydue to Serrin (1969) is the following: Given a constant (alfa) there exists a condition on the boundary of the domain (omega)such that the Dirichlet problem for the mean equation (alfa)is solvable. Besides, if Serrin's condition fails there is a non-existence result. Taking into account this classical result one may ask if a similar theorem holds in hyperbolic space. The goal of this thesis is to give a positive answer to this question establishing a certain Serrin type condition. Thus we obtain existence of surfaces whose graphs has prescribed mean curvature H(x) in hyperbolic space. This result is sharp because if the condition is not satisfied then a non- existence result can be inferred. The main point of the argument is some a priori gradient estimate and degree theory.

Page generated in 0.0281 seconds