• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] CONSTRUCTION OF A SCANNING MAGNETIC MICROSCOPE USING HALL EFFECT SENSORS MODEL HG-362A / [pt] CONSTRUÇÃO DE UM MICROSCÓPIO MAGNÉTICO DE VARREDURA USANDO SENSORES DE EFEITO HALL MODELO HG-362A

CHRISTIAN DAVID MEDINA GARCIA 22 June 2020 (has links)
[pt] A microscopia magnética de varredura tem sido um importante campo de pesquisa destinado à obtenção das propriedades magnéticas de diferentes materiais e suas aplicações em áreas como geologia, medicina, ciências e tecnologia. No Laboratório de Instrumentação do Departamento de Física da PUC-Rio construímos e calibramos um microscópio magnético de varredura capaz de medir e mapear amostras com massas na ordem de microgramas. O microscópio foi construído utilizando um sistema de leitura baseado em uma configuração gradiométrica que utiliza dois elementos sensores de efeito Hall com tamanho de 300 um (micrômetro) e está separado da superfície da amostra por uma distância de 143 um (micrômetro). Os mapeamentos podem ser realizados sob um campo magnético aplicado de até 500 mT. Aperfeiçoamos o microscópio Hall utilizando uma plataforma feita de acrílico capaz de diminuir o ruído mecânico gerado durante o mapeamento usando um sistema de molas ligada à atuadores lineares responsáveis pela varredura bidimensional. Também foi construído um sistema de leitura composto por três placas de circuito impresso de baixo custo. O microscópio Hall possui uma sensibilidade em torno de 300 nTrms/ (Hz) 1/2 e foi calibrado usando uma esfera de níquel com 99 porcento de pureza. A sensibilidade em momento magnético alcançada foi da ordem de 10 −12Am2. Todos os equipamentos envolvidos na operação do microscópio são controlados utilizando a linguagem LabVIEW. Como exemplo de aplicação, fabricamos cubos feitos de micropartículas de óxido de ferro e nanopartículas magnéticas de magnetita usando o método de coprecipitação em meio alcalino. As propriedades magnéticas destes materiais foram obtidas utilizando o microscópio construído. / [en] Scanning magnetic microscopy has been an important field of research for obtaining magnetic properties of different materials and their applications in areas such as geology, medicine, science, and technology. In this study, a scanning magnetic microscope, capable of measuring and mapping samples with masses in the microgram range, was developed and calibrated at the Instrumentation Laboratory of the Physics Department of the PUC-Rio. This device was developed using a reading system based on a gradiometric configuration with two 300 um Hall-effect sensor elements. The microscope was separated from the sample surface by a distance of 143 um. The mappings can be performed under an applied magnetic field of up to 500 mT. The Hall microscope was improved by using a platform made of acrylic capable of reducing mechanical noise generated during the mapping, through a system of springs connected to linear actuators responsible for twodimensional scanning. A reading system with three low-cost printed circuit boards was also developed. The Hall microscope has a sensitivity of around 300 nTrms/(Hz)1/2 and was calibrated using a nickel sphere (99 percent pure). The magnetic moment sensitivity achieved was of the order of 10 −12Am2. All devices used for operating the microscope were controlled using the LabVIEW language. As an application example, cubes of iron oxide microparticles and magnetite magnetic nanoparticles were made using the alkaline coprecipitation method. The magnetic properties of these materials were obtained using the microscope developed in this study.
2

[pt] MICROSCOPIA MAGNÉTICA DE VARREDURA UTILIZANDO SENSORES DE EFEITO HALL COM POLARIZAÇÃO DE CORRENTE PULSADA / [en] SCANNING MAGNETIC MICROSCOPY USING HALL EFFECT SENSORS BIASED WITH PULSED CURRENT

LANNA ISABELY MORAIS SINIMBU 19 October 2023 (has links)
[pt] A pesquisa de caracterização de materiais é fundamental para o desenvolvimento de diversas tecnologias. No campo de estudo de amostras anisotrópicas como o caso encontrado no paleomagnetismo, é importante estudar a caracterização magnética de minerais rochosos para compreender o campo geomagnético. A caracterização de amostras anisotrópicas, como rochas, tem aplicações na datação do tempo geológico e na caracterização de minérios que sofrem mudanças magnéticas em temperaturas superiores à de Curie. Assim, é necessário conhecer as propriedades físicas desses materiais em relação ao comportamento magnético. Existem várias instrumentações usados neste estudo, como magnetômetro utilizando sensores Superconducting Quantum Interference Device (SQUID), magnetômetro de Amostra Vibrante (VSM), Magnetic Property Measurement System (MPMS) e os Microscópios Magnéticos de Varreduras (MMV) entre outros. Entretanto, o MMV permite mapear o comportamento magnético do material realizando desta forma uma caracterização magnética local da amostra. Nesse contexto, foi proposta uma alternativa de leitura usando a técnica Delta Mode da empresa Keithley no MMV. O objetivo é eliminar os efeitos termoelétricos, realizar medições com baixo ruído de tensão e obter uma alternativa para a leitura do campo magnético induzido no MMV. No desenvolvimento do trabalho, foram utilizados sensores de efeito Hall do modelo HQ-811 em uma configuração gradiométrica, juntamente com uma fonte de corrente (Keithley, modelo 6220) e um Nanovoltímetro (Keithley, modelo 2182A). Os resultados iniciais da calibração revelaram um desvio de cerca de 6 por cento nas medições. Com base nessa calibração, nosso objetivo final é empregar a técnica Delta Mode no MMV para obter as curvas de magnetização das amostras, mesmo em situações desafiadoras de sobreposição de sinais de campo magnético induzido. A metodologia adotada envolve o uso de partículas magnéticas de óxido de ferro em escala nano e micro, posicionadas em três cavidades cilíndricas (A1, A2 e A3) de aproximadamente 800 micrômetros de diâmetro com 800 micrômetros de profundidade, dentro do mesmo porta-amostra. Durante o experimento, um dos desafios foi lidar com a sobreposição de sinais quando aplicado um campo magnético perpendicular ao plano do porta-amostra. Para determinar o valor de magnetização de cada amostra, utilizamos um modelo teórico de um cilindro de corrente devido ao formato das cavidades onde as amostras foram depositadas. Os valores de magnetizações encontrados para diferentes espaçamentos de posicionamento das amostras foram em média de AM1= 62,59 Am(2) /kg, AM2= 13,14 Am(2) /kg e AM3= 10,13 Am(2) /kg para um campo de 0,5 T, onde apresentaram reprodutividade para diferentes situações. / [en] Materials characterization research is fundamental for the development of various technologies. In the field of anisotropic sample studies, such as in paleomagnetism, it is important to investigate the magnetic characterization of rock minerals to understand the geomagnetic field. Characterizing anisotropic samples, such as rocks, has applications in geological time dating and the characterization of ores that undergo magnetic changes at temperatures higher than the Curie temperature. Therefore, it is necessary to understand the physical properties of these materials in relation to their magnetic behavior. Various instrumentation techniques are used in this study, including magnetometers using Superconducting Quantum Interference Device (SQUID) sensors, Vibrating Sample Magnetometer (VSM), Magnetic Property Measurement System (MPMS), and Magnetic Scanning Microscopes (MMV), among others. However, MMV allows for mapping the magnetic behavior of the material, thus providing a local magnetic characterization of the sample. In this context, an alternative reading technique using the Delta Mode of the Keithley company was proposed for MMV. The objective is to eliminate thermoelectric effects, perform low-noise voltage measurements, and provide an alternative for reading the induced magnetic field in MMV. In the course of this work, Hall effect sensors of the HQ-811 model in a gradiometric configuration, along with a current source (Keithley, model 6220), and a Nanovoltmeter (Keithley, model 2182A) were used. The initial calibration results revealed a deviation of about 6 percent in the measurements. Based on this calibration, our ultimate goal is to employ the Delta Mode technique in the MMV to obtain the magnetization curves of the samples, even in challenging situations of overlapping induced magnetic field signals. The adopted methodology involves the use of nano- and micro-scale iron oxide magnetic particles positioned in three cylindrical cavities (A1, A2, and A3) of approximately 800 micrometers in diameter with 800 micrometers in depth, within the same sample holder. During the experiment, one of the challenges was dealing with signal overlap when a magnetic field was applied perpendicular to the plane of the sample holder. To determine the magnetization value of each sample, a theoretical model of a current cylinder was used due to the shape of the cavities where the samples were deposited. The magnetization values found for different sample positioning spacings were on average AM1 = 62.59 Am(2)/kg, A(2) = 13.14 Am(2)/kg, and A3 = 10.13 Am(2)/kg for a magnetic field of 0.5 T, which showed reproducibility for different situations.

Page generated in 0.0468 seconds